Методы создания высокого вакуума: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Метки: через визуальный редактор с мобильного устройства из мобильной версии
спам-ссылки: publ.lib.ru
 
(не показано 6 промежуточных версий 6 участников)
Строка 1: Строка 1:
<!-- ВЫГЛЯДИТ КАК РЕФЕРАТ ИЛИ НАУЧНАЯ РАБОТА — ПОДОЗРЕВАЮ КОПИВИО, НО НЕ ИЩЕТСЯ -->
<!-- ВЫГЛЯДИТ КАК РЕФЕРАТ ИЛИ НАУЧНАЯ РАБОТА — ПОДОЗРЕВАЮ КОПИВИО, НО НЕ ИЩЕТСЯ -->
{{проверить информацию}}
{{викифицировать}}
{{переработать}}
{{переработать}}
{{стиль}}
{{чистить}}
Первые исследования [[вакуум]]а можно отнести ко временам [[Торричелли, Эванджелиста|Торричелли]], когда после создания им [[манометр]]а начались исследования так называемой Торричеллиевой пустоты, возникающей в ртутном манометре над поверхностью [[Ртуть|ртути]]. Долгое время шли споры о степени разрежения в этой области. Сейчас очевидно, что [[давление]] в этой области было около 10<sup>−3</sup> мм рт.ст. (давление насыщенного пара ртути при комнатой температуре), что по современным классификациям относится к области низкого вакуума. Однако такой метод откачки хотя и даёт возможность создавать достаточно неплохой вакуум, достаточный для проведения некоторых [[эксперимент]]ов, однако откачивание таким методом значительных объёмов не представляется возможным. Кроме того для многих экспериментов необходим высокий (10<sup>−6</sup>) либо сверхвысокий (10<sup>−9</sup>) вакуум.
Первые исследования [[вакуум]]а можно отнести ко временам [[Торричелли, Эванджелиста|Торричелли]], когда после создания им [[манометр]]а начались исследования так называемой Торричеллиевой пустоты, возникающей в ртутном манометре над поверхностью [[Ртуть|ртути]]. Долгое время шли споры о степени разрежения в этой области. Сейчас очевидно, что [[давление]] в этой области было около 10<sup>−3</sup> мм рт.ст. (давление насыщенного пара ртути при комнатой температуре), что по современным классификациям относится к области низкого вакуума. Однако такой метод откачки хотя и даёт возможность создавать достаточно неплохой вакуум, достаточный для проведения некоторых [[эксперимент]]ов, однако откачивание таким методом значительных объёмов не представляется возможным. Кроме того для многих экспериментов необходим высокий (10<sup>−6</sup>) либо сверхвысокий (10<sup>−9</sup>) вакуум.


Для получения столь высокого вакуума используются специальные насосы (кроме того, для создания сверхвысокого вакуума необходимо использовать прогреваемые системы со специальными тефлоновыми или металлическими прокладками).
Для получения столь высокого вакуума используются специальные насосы (кроме того, для создания сверхвысокого вакуума необходимо использовать прогреваемые системы со специальными тефлоновыми или металлическими прокладками). Для получения высокого и сверхвысокого вакуума используется комбинированная откачка. Форвакуумная откачка осуществляется например механическим насосом, либо, если высоковакуумный насос является орбитроном, форвакуум создаётся криосорбционным насосом, который позволяет получить вакуум, достаточный для запуска высоковакуумных насосов.
Для получения высокого и сверхвысокого вакуума используется комбинированная откачка. Форвакуумная откачка осуществляется например механическим насосом, либо, если высоковакуумный насос является орбитроном, форвакуум создаётся криосорбционным насосом, который позволяет получить вакуум, достаточный для запуска высоковакуумных насосов.


Используется два типа высоковакуумных насосов: магниторазрядные и диффузионные (их использование связано с возможностью их использования без дефицитного на данный момент (вследствие недостаточного финансирования) жидкого азота).
Используется два типа высоковакуумных насосов: магниторазрядные и диффузионные.


Принцип работы магниторазрядных насосов основан на нескольких эффектах. Первый это гетерные свойства свеженапыленной плёнки [[Титан (элемент)|титана]] (она захватывает молекулы остаточных газов), которые используется в насосах типа [[орбитрон]], в которых создание свеженапыленной плёнки осуществляется термическим распылением титана, и воздействии на ионизированные молекулы газа электромагнитным полем, которое внедряет их в титан и при этом распыляет титан, создавая свеженапыленную плёнку титана.
Принцип работы магниторазрядных насосов основан на нескольких эффектах. Первый это геттерные свойства свеженапыленной плёнки [[Титан (элемент)|титана]], захватывающей молекулы остаточных газов, что используется в насосах типа [[орбитрон]], в которых осуществляется термическое распыление титана; или воздействие на ионизированные молекулы газа электромагнитным полем, распыляющее титан для создания свеженапыленной плёнки титана.


Принцип работы диффузионного насоса подобен пылесосу, который используется для побелки. Создаётся поток молекул рабочего газа, увлекающий за собой молекулы остаточных газов.
Диффузионный насос по принципу действия подобен пылесосу, использующемуся для побелки: поток молекул рабочего газа увлекает за собой молекулы остаточных газов.


Кроме того для создания сверхвысокого вакуума, как средство предварительной откачки используются криосорбционные насосы, создающие вакуум, достаточный для запуска орбитронов, принцип работы криосорбционных насосов основан на зависимости абсорбционных свойств материала от температуры. Для откачки гетер (которым часто является активированный уголь) охлаждается жидким азотом, при этом его гетерные свойства улучшаются и он активно абсорбирует газ, создавая вакуум. Так же сверхвысокий вакуум, можно получить в космосе, при помощи разгерметизации сверхпрочного баллона в космическом вакуумном пространстве с последующим герметичным закрыванием этого баллона, в момент нахождения его в этом космическом пространстве. В этом случае, при применении специальных фильтров, непозволяющих попасть в этот баллон микрочастицам находящегося в космосе космического вещества, возможно получить при этом таким способом, чистый, сверхвысокий вакуум, способы получения которого в земных условиях, в настоящее время пока еще не изобретены.
Для создания сверхвысокого вакуума, как средство предварительной откачки, используются криосорбционные насосы, создающие вакуум, достаточный для запуска орбитронов. Принцип их работы основан на зависимости абсорбционных свойств материала от температуры. Для откачки [[геттер (газопоглотитель)]] охлаждается жидким азотом, при этом его геттерные свойства улучшаются и он активно абсорбирует газ, создавая вакуум.
Сверхвысокий вакуум можно получить в космосе при разгерметизации сверхпрочного баллона с последующим герметичным закрыванием этого баллона. Применение специальных фильтров, не позволяющих попасть в этот баллон микрочастицам космического вещества, позволяет получить чистый сверхвысокий вакуум, способы достижения которого в земных условиях пока не изобретены.


== Преимущества и недостатки различных типов высоковакуумных насосов ==
== Преимущества и недостатки различных типов высоковакуумных насосов ==
Диффузионные насосы, были одними из первых типов насосов использовавшихся для создания вакуума, который был недостижим для механических насосов. Изначально рабочей жидкостью была ртуть (до создания синтетических, термически стабильных, обладающих низким давлением насыщенных паров масел), что вызывало значительные трудности, поскольку ртуть достаточно активно взаимодействует с металлами, особенно в области высоких температур, кроме того, ртуть токсична, создавало опасность для персонала как при работе насоса, так и при чрезвычайных ситуациях, например его разрушении. После создания синтетических масел от ртути отказались, однако при этом возникли проблемы с термическим разложением масла и загрязнения вакуумных систем маслом. Серийные модели диффузионных насосов позволяют получать вакуум 10<sup>−4</sup> возможно 10<sup>−5</sup> мм.рт.ст. В случае, если применяется вымораживающая ловушка, может быть достигнуто давление где-то на порядок лучше. К преимуществам диффузионных насосов относится высокая скорость откачки, возможность использования без охлаждения жидким азотом, достаточно высокое давление запуска, возможность экспонирования на атмосферу (если насос остановлен). Стоит отметить отсутствие у диффузионных насосов эффекта памяти и селективности откачки. Однако поскольку вакуумная система загрязняется маслом, использование диффузионных насосов как средств предварительной откачки происходит редко, кроме того в процессе остановки необходима откачка форвакуумным насосом, что требует наблюдения за системой при остановке. Ещё одним важным недостатком, связанным с загрязнением системы маслом является быстрый выход из строя ионизационных манометрических ламп.
Диффузионные насосы были одними из первых типов насосов использовавшихся для создания вакуума, недостижимого для механических насосов. До создания термически стабильных синтетических масел, обладающих низким давлением насыщенных паров, рабочей жидкостью была ртуть, что вызывало затруднения, из-за активного взаимодействия ртути с металлами, особенно в области высоких температур. Кроме того ртуть токсична. После создания синтетических масел от ртути отказались, однако при этом возникли проблемы с термическим разложением масла и загрязнением им вакуумных систем. Серийные модели диффузионных насосов позволяют получать вакуум 10<sup>−4</sup>...10<sup>−5</sup> мм рт. ст. При применении вымораживающей ловушки может быть достигнуто давление на порядок ниже. Преимуществами диффузионных насосов считают высокую скорость откачки, возможность использования без охлаждения жидким азотом, запуск при высоком давлении, возможность экспонирования в атмосфере остановленного насоса, отсутствие эффекта памяти и селективности откачки. Однако из-за загрязнения вакуумной системы маслом диффузионные насосы редко используются как средства предварительной откачки. Необходимость откачки форвакуумным насосом требует наблюдения за системой при остановке. Важным недостатком является быстрый выход из строя ионизационных манометрических ламп из-за загрязнения системы маслом.


Гетерионные насосы. Насосы типа НОРД — позволяют получить давление 10<sup>−7</sup> мм.рт.ст. причём, вакуум не загрязняется маслом (если попадание паров масла из форвакуумного насоса сведено к минимуму, использованием различных, в том числе и вымораживающих, ловушек). Однако насосы данного типа плохо откачивают масло, которое может попасть в систему при её откачке форвакуумным насосом, имеют меньшую по сравнению с диффузионными быстроту откачки, в их конструкции присутствует много дефицитного титана, необходимо наличие очень мощных, дорогих магнитов, работа с которыми требует осторожности. Однако если попадание масла из форвакуумнго насоса сведено к минимуму, для откачки не очень больших объёмов гетерионные насосы позволяют получить высокий вакуум, не загрязнённый маслом, стоит отметить, что ионизационные манометрические лампы, используемые для контроля вакуума создаваемого насосами этого типа работают намного дольше, по сравнению с системами откачиваемыми диффузионными насосами.
Гетерионные насосы. Насосы типа НОРД — позволяют получить давление 10<sup>−7</sup> мм рт. ст. без загрязнения маслом если попадание паров масла из форвакуумного насоса сведено к минимуму использованием различных, в том числе и вымораживающих, ловушек. Однако насосы такого типа плохо откачивают масло, которое может попасть в систему при её откачке форвакуумным насосом, работают медленнее диффузионных, требуют много дорогостоящего титана и очень мощных, дорогих магнитов, работа с которыми требует осторожности, но позволяют получить высокий вакуум без загрязнения маслом. По сравнению с системами, откачиваемыми диффузионными насосами, используемые в гетерионных насосах для контроля вакуума ионизационные манометрические лампы работают намного дольше.


Насосы типа ОРБИТРОН. Данные насосы можно назвать неполноценными НОРДами, они позволяют получать более высокий вакуум, по сравнению с НОРДами, в прогреваемых системах можно получать вакуум 10<sup>−9</sup> мм.рт.ст. Название «неполноценные НОРДы» обусловлено тем, что в ОРБИТРОНах используется лишь один механизм связывания остаточных газов, основанный на гетерных свойствах свеженапыленной плёнки титана. Стоит отметить, что ОРБИТРОНы, как не странно, лучше откачивают масло (хотя поскольку обычно для создания форвакуума для ОРБИТРОнах используются криосорбционные насосы-загрязнение системы маслом меньше, чем при использовании механических форвакуумных насосов). ОРБИТРОНы имеют более высокую скорость откачки (по сравнению с НОРДами). К недостаткам можно отнести - низкое давление запуска, что обуславливает необходимость использования криосорбционных насосов, требующих жидкий азот, высокий расход титана.
Насосы типа ОРБИТРОН можно назвать неполноценными НОРДами. Они позволяют получать более высокий вакуум в прогреваемых системах можно достигать 10<sup>−9</sup> мм рт. ст. В ОРБИТРОНах используется лишь один механизм связывания остаточных газов, основанный на геттерных свойствах свеженапылённой плёнки титана. Они лучше откачивают масло, поскольку обычно для создания форвакуума в них используются криосорбционные насосы и загрязнение системы маслом меньше, чем при использовании механических форвакуумных насосов. ОРБИТРОНы имеют более высокую скорость откачки по сравнению с НОРДами. К недостаткам можно отнести высокий расход титана и низкое давление запуска, что обуславливает необходимость использования криосорбционных насосов, требующих жидкий азот.


Криоадсорбционные насосы (в отличие от вымораживающих панелей) используются как средство предварительной откачки, для запуска орбиронов. Один из их главных недостатков, особенно заметный после развала СССР — это необходимость использовать для их работы жидкий азот. Кроме того, после откачки, требуется их восстановление достаточно длительным вакуумным прогревом. Однако они обладают и рядом преимуществ- низкое (для форвакуумного насоса) остаточное давление, достаточное для запуска насосов типа ОРБИТРОН и, что также существенно, криоадсорбционные насосы являются средствами полностью безмасляной откачки.
Криоадсорбционные насосы используются как средство предварительной откачки для запуска орбиронов. Главными недостатками являются необходимость использования жидкого азота и необходимость восстановления длительным вакуумным прогревом. Преимуществами считают низкое для форвакуумного насоса остаточное давление и полностью безмасляную откачку.


Стоит отметить, что указанные значения давлений нужно рассматривать как ориентировочные (условно можно предполагать наличие коэффициента около 5), известно, что вакуум определяется с точностью до порядка.
Указанные значения давлений ориентировочны, обычно вакуум определяется с точностью до порядка.


== Методы контроля вакуума ==
== Методы контроля вакуума ==
Для контроля высокого вакуума по ряду причин не применимы методы измерения давления применяемые в области обычных и умеренно высоких давлений. Одной из причин является то, обычные методы контроля давления основаны на измерении силы, а в случае даже низкого вакуума придётся иметь дело с измерением малых сил, либо малой разности сил, и хотя для давлений до 10<sup>−3</sup> мм.рт.ст. ещё возможно с применением специальных конструкций ртутных манометров, однако для более высокого вакуума они не применимы. Кроме того следует учитывать, что жидкостные манометры не могут измерить давление меньше давления насыщенных паров рабочей жидкости, кроме этого они могут быть источником загрязнений.
Для контроля высокого вакуума неприменимы методы измерения давления из области обычных и умеренно высоких давлений. Обычные методы контроля основаны на измерении силы, а в случае даже низкого вакуума придётся иметь дело с измерением малых сил или их разностей, хотя для давлений до 10<sup>−3</sup> мм рт. ст. это ещё возможно при применении ртутных манометров специальных конструкций. Жидкостные манометры не могут измерить давление меньше давления насыщенных паров рабочей жидкости и могут быть источником загрязнений.
Вследствие этого для контроля вакуума применяют другие методы, которые не позволяют получить такую-же точность, как обычные манометры, но обладают приемлемой точностью для вопросов контроля вакуума.


Для контроля форвакуума используются термопарные манометрические лампы. Принцип их работы основан на зависимости теплоотдачи от давления. Принципиальная конструкция их достаточно проста имеется проволока, нагреваемая от источника постоянного тока, ток должен поддерживаться по возможности постоянным, к которой приварена термопара. Проволока нагревается от источника постоянного тока (сила тока — подбирается индивидуально обычно она меньше 150 мА), температура нагреваемой проволоки контролируется с помощью термопары. Поскольку подвод тепла постоянен (проволока нагревается Джоулевым теплом, тепло выделяющиеся в нагревателе полностью определяется током через проволоку и её сопротивлением), температура проволоки определяется теплоотдачей, которая, как писалось выше зависит от давления. Лампы этого типа позволяют контролировать давление соответствующие давлению форвакуума и позволяет определить давление, при котором можно запускать высоковакуумные насосы. Преимущества данных ламп - возможность их экспонирования на атмосферу, даже во включённом состоянии. Загрязнение вакуума маслом также незначительно портит лампы этого типа, однако их использование невозможно для контроля высокого вакуума.
Для контроля форвакуума используют термопарные манометрические лампы. Принцип их работы основан на зависимости теплоотдачи от давления. Принципиальная конструкция их достаточно проста: термопарой контролируется температура нагреваемой от источника постоянного тока (обычно меньше 150 мА). Поскольку подвод тепла постоянен, температура проволоки определяется теплоотдачей, зависящей от давления. Лампы этого типа позволяют контролировать давление форвакуума и позволяют определить давление, при котором можно запускать высоковакуумные насосы. Преимущества: возможность экспонирования на атмосферу даже во включённом состоянии. Загрязнение вакуума маслом незначительно портит лампы этого типа. Однако их использование невозможно для контроля высокого вакуума.


Для контроля высокого вакуума, в котором и производится напыление, используются ионизационные типы манометрических ламп. Принцип их работы основан на зависимости ионизационного тока от степени вакуума. Лампа представляет катод, из которого, за счёт его разогрева, эмитируются электроны, между катодом и анодом прикладывается ускоряющее напряжение, благодаря которому электроны ускоряются, ионизируют молекулы остаточных газов, по развиваемому току можно судить о вакууме. К недостаткам данных ламп можно отнести выход их из строя не только при экспонировании работающей лампы на атмосферу, но и включение её в форвакууме. Кроме того загрязнение системы маслом, приводит к её быстрому выходу из строя.
Для контроля высокого вакуума, в котором и производится напыление, применяются ионизационные типы манометрических ламп, у которых ионизационный ток зависит от степени вакуума. За счёт разогрева катод эмитирует электроны; благодаря напряжению между катодом и анодом электроны ускоряются и ионизируют молекулы остаточных газов. По развиваемому току можно судить о вакууме. К недостаткам этих ламп можно отнести выход из строя не только от загрязнения маслом или экспонирования работающей лампы на атмосферу, но и необходимость включения в форвакууме.


Стоит отметить, что показания обоих типов ламп зависят от большого числа трудно учитываемых и трудно воспроизводимых условий и выбранных значений токов нагрева, однако эти лампы обеспечивают достаточную точность для проведения многих экспериментов.
Показания ламп обоих типов зависят от многих трудно учитываемых и плоховоспроизводимых условий, однако для многих экспериментов они обеспечивают достаточную точность.


Стоит отметить, что для контроля вакуума в случае использования НОРДов либо других типов гетерионных насосов можно использовать их ионный ток, который связан с вакуумом, причём с допустимой точностью в области их работы (не учитывая область запуска) можно считать ток обратно пропорциональным давлению в насосе, присутствующая в уравнении I(p) константа, определяется например с использованием показания например ионизационных манометрических ламп. Недостатком такого метода контроля является то, что измеряется давление в насосе, которое может значительно отличаться от давления в откачиваемой системе. Однако используя такой способ контроля можно значительно уменьшить износ ионизационных ламп.
Для контроля вакуума в случае использования гетерионных насосов можно использовать их ионный ток, который связан со степенью вакуума. С допустимой в области их работы (но не в области запуска) точностью можно считать ток обратно пропорциональным давлению в насосе. Присутствующая в выражении для зависимости тока от давления константа определяется с использованием показаний ионизационных манометрических ламп. Недостатком этого метода контроля является то, что измеряется давление в насосе, – оно может значительно отличаться от давления в откачиваемой системе. Но при таком способе контроля можно значительно уменьшить износ ионизационных ламп.


== Особенности создания сверхвысокого вакуума ==
== Особенности создания сверхвысокого вакуума ==
При откачке системы остаточное давление определяется 2 факторами:
Остаточное давление в системе определяется:
# скоростью откачки и остаточным давление обеспечиваемыми насосами
# Скоростью откачки и остаточным давлением обеспечиваемым насосами;
# проникновением газа в систему через различного рода течи.
# Натеканием газа в систему.
При работе в области высокого вакуума остаточное давление в основном определяется используемыми насосами.
В области высокого вакуума остаточное давление в основном определяется типом используемого насоса, однако в области сверхвысокого вакуума важной становится десорбция конструктивными элементами системы газов, абсорбированных при экспонировании на атмосферу.


Для получения сверхвысокого вакуума необходим предварительный прогрев (обезгаживание). Поскольку нагрев осуществляется до максимально возможных температур, при этом возникают:
Однако при работе в области сверхвысокого вакуума важным является явление десорбции газов конструктивными элементами системы, явлении, заключающемся в десорбции молекул газа, абсорбированных системой при её экспонировании на атмосферу.
# Деформация деталей системы вследствие разницы температурных коэффициентов расширения, например металла и стекла;

# Термическая нестабильность прокладок.
Для получения сверхвысокого вакуума необходим предварительный прогрев (обезгаживание), для того, чтобы избавится от адсорбированных газов. При этом поскольку нагрев должен осуществляться (естественно, нагреваться должна откаченная система) до максимально возможных температур, возникает ряд вопросов.
Если первый вопрос успешно решается подбором материалов с малыми, либо близкими коэффициентами температурного расширения, то нестабильность полимерных прокладок является фактором, ограничивающим температуру прогрева. При больших температурах начинается разложение прокладок и вместо обезгаживания получаем загрязнение. Одним часто используемых и из наиболее стабильных полимеров до температур порядка 300 градусов, является тефлон (фторопласт, тетрафторэтилен), однако он способен течь при приложении давления. Для работы с вакуумом выше 10<sup>-9</sup> мм рт. ст. чаще применяются металлические прокладки, но при их использовании возникают сложности при открывании и герметизации системы. Однако для создания «рекордного» вакуума (10<sup>−11</sup> мм рт. ст.) использование таких прокладок является единственно возможным.
# Деформация разнородных деталей системы вследствие различных температурных коэффициентов расширения (например метал-стекло, различные вводы и вводы манипуляторов)
# термическая нестабильность прокладок.
Если первый вопрос успешно решается подбором материалов с малыми, либо близкими коэффициентами температурного расширения, то нестабильность полимерных прокладок является фактором, ограничивающим температуру прогрева (при больших температурах начинается разложение прокладок и вместо обезгаживания получаем загрязнение).
Одним из наиболее стабильных полимеров, используемый в сверхвысоковакуумных системах является тефлон (другие названия — фторопласт, тетрафторэтилен), однако наряду с тем, что он может прогреваться до температур не выше 300 градусов и имеет свойство течь при приложении давления.
Для работы с вакуумом выше 10^-9 мм.рт.ст. более разумным является использование металлических прокладок, вместо удобных полимерных. Однако при использовании металлических прокладок возникают сложности при открытии и закрытии системы (при этом прокладки приходят в негодность), а их изготовление не очень простое, как и их замена, однако для создания «рекордного» вакуума (10<sup>−11</sup> мм.рт.ст.) использование таких прокладок является единственно возможным.


== Ссылки ==
== Ссылки ==
{{нет сносок}}
{{нет сносок|дата=2010-01-23}}
* {{книга
* {{книга
|автор =под редакцией Л. Майссела, Р. Гленга,
|автор =под редакцией Л. Майссела, Р. Гленга,
Строка 61: Строка 57:
|заглавие = Технология тонких плёнок. Справочник
|заглавие = Технология тонких плёнок. Справочник
|оригинал =
|оригинал =
|ссылка =http://publ.lib.ru/ARCHIVES/M/MAYSSEL_Leon/_Mayssel_L..html#01
|ссылка =publ.lib.ru/ARCHIVES/M/MAYSSEL_Leon/_Mayssel_L..html#01
|ответственный = пер. с англ. под редакцией М. И. Елисона, Г. Г. Смолко
|ответственный = пер. с англ. под редакцией М. И. Елисона, Г. Г. Смолко
|издание =
|издание =
Строка 94: Строка 90:


[[Категория:Вакуум]]
[[Категория:Вакуум]]

{{спам-ссылки|1=
* http://publ.lib.ru/ARCHIVES/M/MAYSSEL_Leon/_Mayssel_L..html#01
}}

Текущая версия от 08:47, 19 августа 2023

Первые исследования вакуума можно отнести ко временам Торричелли, когда после создания им манометра начались исследования так называемой Торричеллиевой пустоты, возникающей в ртутном манометре над поверхностью ртути. Долгое время шли споры о степени разрежения в этой области. Сейчас очевидно, что давление в этой области было около 10−3 мм рт.ст. (давление насыщенного пара ртути при комнатой температуре), что по современным классификациям относится к области низкого вакуума. Однако такой метод откачки хотя и даёт возможность создавать достаточно неплохой вакуум, достаточный для проведения некоторых экспериментов, однако откачивание таким методом значительных объёмов не представляется возможным. Кроме того для многих экспериментов необходим высокий (10−6) либо сверхвысокий (10−9) вакуум.

Для получения столь высокого вакуума используются специальные насосы (кроме того, для создания сверхвысокого вакуума необходимо использовать прогреваемые системы со специальными тефлоновыми или металлическими прокладками). Для получения высокого и сверхвысокого вакуума используется комбинированная откачка. Форвакуумная откачка осуществляется например механическим насосом, либо, если высоковакуумный насос является орбитроном, форвакуум создаётся криосорбционным насосом, который позволяет получить вакуум, достаточный для запуска высоковакуумных насосов.

Используется два типа высоковакуумных насосов: магниторазрядные и диффузионные.

Принцип работы магниторазрядных насосов основан на нескольких эффектах. Первый – это геттерные свойства свеженапыленной плёнки титана, захватывающей молекулы остаточных газов, что используется в насосах типа орбитрон, в которых осуществляется термическое распыление титана; или воздействие на ионизированные молекулы газа электромагнитным полем, распыляющее титан для создания свеженапыленной плёнки титана.

Диффузионный насос по принципу действия подобен пылесосу, использующемуся для побелки: поток молекул рабочего газа увлекает за собой молекулы остаточных газов.

Для создания сверхвысокого вакуума, как средство предварительной откачки, используются криосорбционные насосы, создающие вакуум, достаточный для запуска орбитронов. Принцип их работы основан на зависимости абсорбционных свойств материала от температуры. Для откачки геттер (газопоглотитель) охлаждается жидким азотом, при этом его геттерные свойства улучшаются и он активно абсорбирует газ, создавая вакуум.

Сверхвысокий вакуум можно получить в космосе при разгерметизации сверхпрочного баллона с последующим герметичным закрыванием этого баллона. Применение специальных фильтров, не позволяющих попасть в этот баллон микрочастицам космического вещества, позволяет получить чистый сверхвысокий вакуум, способы достижения которого в земных условиях пока не изобретены.

Преимущества и недостатки различных типов высоковакуумных насосов

[править | править код]

Диффузионные насосы были одними из первых типов насосов использовавшихся для создания вакуума, недостижимого для механических насосов. До создания термически стабильных синтетических масел, обладающих низким давлением насыщенных паров, рабочей жидкостью была ртуть, что вызывало затруднения, из-за активного взаимодействия ртути с металлами, особенно в области высоких температур. Кроме того ртуть токсична. После создания синтетических масел от ртути отказались, однако при этом возникли проблемы с термическим разложением масла и загрязнением им вакуумных систем. Серийные модели диффузионных насосов позволяют получать вакуум 10−4...10−5 мм рт. ст. При применении вымораживающей ловушки может быть достигнуто давление на порядок ниже. Преимуществами диффузионных насосов считают высокую скорость откачки, возможность использования без охлаждения жидким азотом, запуск при высоком давлении, возможность экспонирования в атмосфере остановленного насоса, отсутствие эффекта памяти и селективности откачки. Однако из-за загрязнения вакуумной системы маслом диффузионные насосы редко используются как средства предварительной откачки. Необходимость откачки форвакуумным насосом требует наблюдения за системой при остановке. Важным недостатком является быстрый выход из строя ионизационных манометрических ламп из-за загрязнения системы маслом.

Гетерионные насосы. Насосы типа НОРД — позволяют получить давление 10−7 мм рт. ст. без загрязнения маслом если попадание паров масла из форвакуумного насоса сведено к минимуму использованием различных, в том числе и вымораживающих, ловушек. Однако насосы такого типа плохо откачивают масло, которое может попасть в систему при её откачке форвакуумным насосом, работают медленнее диффузионных, требуют много дорогостоящего титана и очень мощных, дорогих магнитов, работа с которыми требует осторожности, но позволяют получить высокий вакуум без загрязнения маслом. По сравнению с системами, откачиваемыми диффузионными насосами, используемые в гетерионных насосах для контроля вакуума ионизационные манометрические лампы работают намного дольше.

Насосы типа ОРБИТРОН можно назвать неполноценными НОРДами. Они позволяют получать более высокий вакуум – в прогреваемых системах можно достигать 10−9 мм рт. ст. В ОРБИТРОНах используется лишь один механизм связывания остаточных газов, основанный на геттерных свойствах свеженапылённой плёнки титана. Они лучше откачивают масло, поскольку обычно для создания форвакуума в них используются криосорбционные насосы и загрязнение системы маслом меньше, чем при использовании механических форвакуумных насосов. ОРБИТРОНы имеют более высокую скорость откачки по сравнению с НОРДами. К недостаткам можно отнести высокий расход титана и низкое давление запуска, что обуславливает необходимость использования криосорбционных насосов, требующих жидкий азот.

Криоадсорбционные насосы используются как средство предварительной откачки для запуска орбиронов. Главными недостатками являются необходимость использования жидкого азота и необходимость восстановления длительным вакуумным прогревом. Преимуществами считают низкое для форвакуумного насоса остаточное давление и полностью безмасляную откачку.

Указанные значения давлений ориентировочны, обычно вакуум определяется с точностью до порядка.

Методы контроля вакуума

[править | править код]

Для контроля высокого вакуума неприменимы методы измерения давления из области обычных и умеренно высоких давлений. Обычные методы контроля основаны на измерении силы, а в случае даже низкого вакуума придётся иметь дело с измерением малых сил или их разностей, хотя для давлений до 10−3 мм рт. ст. это ещё возможно при применении ртутных манометров специальных конструкций. Жидкостные манометры не могут измерить давление меньше давления насыщенных паров рабочей жидкости и могут быть источником загрязнений.

Для контроля форвакуума используют термопарные манометрические лампы. Принцип их работы основан на зависимости теплоотдачи от давления. Принципиальная конструкция их достаточно проста: термопарой контролируется температура нагреваемой от источника постоянного тока (обычно меньше 150 мА). Поскольку подвод тепла постоянен, температура проволоки определяется теплоотдачей, зависящей от давления. Лампы этого типа позволяют контролировать давление форвакуума и позволяют определить давление, при котором можно запускать высоковакуумные насосы. Преимущества: возможность экспонирования на атмосферу даже во включённом состоянии. Загрязнение вакуума маслом незначительно портит лампы этого типа. Однако их использование невозможно для контроля высокого вакуума.

Для контроля высокого вакуума, в котором и производится напыление, применяются ионизационные типы манометрических ламп, у которых ионизационный ток зависит от степени вакуума. За счёт разогрева катод эмитирует электроны; благодаря напряжению между катодом и анодом электроны ускоряются и ионизируют молекулы остаточных газов. По развиваемому току можно судить о вакууме. К недостаткам этих ламп можно отнести выход из строя не только от загрязнения маслом или экспонирования работающей лампы на атмосферу, но и необходимость включения в форвакууме.

Показания ламп обоих типов зависят от многих трудно учитываемых и плоховоспроизводимых условий, однако для многих экспериментов они обеспечивают достаточную точность.

Для контроля вакуума в случае использования гетерионных насосов можно использовать их ионный ток, который связан со степенью вакуума. С допустимой в области их работы (но не в области запуска) точностью можно считать ток обратно пропорциональным давлению в насосе. Присутствующая в выражении для зависимости тока от давления константа определяется с использованием показаний ионизационных манометрических ламп. Недостатком этого метода контроля является то, что измеряется давление в насосе, – оно может значительно отличаться от давления в откачиваемой системе. Но при таком способе контроля можно значительно уменьшить износ ионизационных ламп.

Особенности создания сверхвысокого вакуума

[править | править код]

Остаточное давление в системе определяется:

  1. Скоростью откачки и остаточным давлением обеспечиваемым насосами;
  2. Натеканием газа в систему.

В области высокого вакуума остаточное давление в основном определяется типом используемого насоса, однако в области сверхвысокого вакуума важной становится десорбция конструктивными элементами системы газов, абсорбированных при экспонировании на атмосферу.

Для получения сверхвысокого вакуума необходим предварительный прогрев (обезгаживание). Поскольку нагрев осуществляется до максимально возможных температур, при этом возникают:

  1. Деформация деталей системы вследствие разницы температурных коэффициентов расширения, например металла и стекла;
  2. Термическая нестабильность прокладок.

Если первый вопрос успешно решается подбором материалов с малыми, либо близкими коэффициентами температурного расширения, то нестабильность полимерных прокладок является фактором, ограничивающим температуру прогрева. При больших температурах начинается разложение прокладок и вместо обезгаживания получаем загрязнение. Одним часто используемых и из наиболее стабильных полимеров до температур порядка 300 градусов, является тефлон (фторопласт, тетрафторэтилен), однако он способен течь при приложении давления. Для работы с вакуумом выше 10-9 мм рт. ст. чаще применяются металлические прокладки, но при их использовании возникают сложности при открывании и герметизации системы. Однако для создания «рекордного» вакуума (10−11 мм рт. ст.) использование таких прокладок является единственно возможным.

  • под редакцией Л. Майссела, Р. Гленга,. [publ.lib.ru/ARCHIVES/M/MAYSSEL_Leon/_Mayssel_L..html#01 Технология тонких плёнок. Справочник] / пер. с англ. под редакцией М. И. Елисона, Г. Г. Смолко. — Москва «Советское радио», 1977. — Т. 1. — 664 с. — 20 000 экз.
  • В. И. Курашов, М. Г. Фомина. Вакуумная техника: средства откачки, их выбор и применение / под ред. проф. Г. Х. Мухамедзянова. — Учеб. пособие. — КГТУ, 1997. — 57 с. — ISBN 5-7882-0022-9.