Эта статья входит в число добротных статей

Эксцизионная репарация оснований: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Спасено источников — 1, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.9.5
 
(не показаны 3 промежуточные версии 3 участников)
Строка 1: Строка 1:
[[Файл:BER basic pathway.svg|frame|Основные этапы эксцизионной репарации оснований: справа — репарация короткими заплатками, слева — репарация точечными заплатками]]
[[Файл:BER basic pathway.svg|frame|Основные этапы эксцизионной репарации оснований: справа — репарация короткими заплатками, слева — репарация точечными заплатками]]
'''Эксцизио́нная репара́ция основа́ний''' ({{lang-en|base excision repair (BER)}}) — система [[Репарация ДНК|репарации ДНК]], удаляющая из {{нп5|Двойная спираль (структура)|двойной спирали|en|Nucleic acid double helix}} повреждённые [[азотистые основания]]. BER начинается с распознавания и удаления повреждённого основания {{нп5|ДНК-гликозилаза|ДНК-гликозилазами|en|DNA glycosylase}}. Далее особая [[Эндонуклеазы|эндонуклеаза]] удаляет фрагмент цепи, содержащей [[нуклеотид]] без основания, и [[ДНК-полимераза|ДНК-полимеразы]] застраивают брешь. Различают BER с точечной заплаткой, при которой удаляется только нуклеотид, лишённый азотистого основания, или BER с короткой заплаткой, при которой удаляется короткий фрагмент, содержащий повреждённый нуклеотид{{sfn|Кребс, Голдштейн, Килпатрик|2017|с=397}}.
'''Эксцизио́нная репара́ция основа́ний''' ({{lang-en|base excision repair (BER)}}) — система [[Репарация ДНК|репарации ДНК]], удаляющая из {{нп5|Двойная спираль (структура)|двойной спирали|en|Nucleic acid double helix}} повреждённые [[азотистые основания]]. BER начинается с распознавания и удаления повреждённого основания {{нп5|ДНК-гликозилаза|ДНК-гликозилазами|en|DNA glycosylase}}. Далее особая [[Эндонуклеазы|эндонуклеаза]] удаляет фрагмент цепи, содержащий [[нуклеотид]] без основания, и [[ДНК-полимераза|ДНК-полимеразы]] застраивают брешь. Различают BER с точечной заплаткой, при которой удаляется только нуклеотид, лишённый азотистого основания, или BER с короткой заплаткой, при которой удаляется короткий фрагмент, содержащий повреждённый нуклеотид{{sfn|Кребс, Голдштейн, Килпатрик|2017|с=397}}.


== Механизм ==
== Механизм ==
Строка 8: Строка 8:


[[Файл:Site AP.gif|thumb|left|Схематическое представление AP-сайта]]
[[Файл:Site AP.gif|thumb|left|Схематическое представление AP-сайта]]
Если лиазной активности не было, то с образовавшимся {{нп5|AP-сайт|AP-сайтом|en|AP site}} (то есть а[[пурин]]овым и а[[пиримидин]]овым) связывается эндонуклеаза APE1, которая удаляет повреждённый нуклеотид и от двух до десяти его соседей. Далее репликативный комплекс, состоящий из ДНК-полимераз {{нп5|ДНК-полимераза дельта|δ|en|DNA polymerase delta}} и {{нп5|ДНК-полимераза эпсилон|ε|en|DNA polymerase epsilon}} и других компонентов, застраивает брешь, вытесняя близлежащие нормальные нуклеотиды. Вытесненные при этом нормальные нуклеотиды удаляются эндонуклеазой {{нп5|FEN1||en|Flap structure-specific endonuclease 1}}. Далее новосинтезированный участок лигируется лизагой 1{{sfn|Кребс, Голдштейн, Килпатрик|2017|с=398}}.
Если лиазной активности не было, то с образовавшимся {{нп5|AP-сайт|AP-сайтом|en|AP site}} (то есть а[[пурин]]овым и а[[пиримидин]]овым) связывается эндонуклеаза APE1, которая удаляет повреждённый нуклеотид и от двух до десяти его соседей. Далее репликативный комплекс, состоящий из ДНК-полимераз {{нп5|ДНК-полимераза дельта|δ|en|DNA polymerase delta}} и {{нп5|ДНК-полимераза эпсилон|ε|en|DNA polymerase epsilon}} и других компонентов, застраивает брешь, вытесняя близлежащие нормальные нуклеотиды. Вытесненные при этом нормальные нуклеотиды удаляются эндонуклеазой {{нп5|FEN1||en|Flap structure-specific endonuclease 1}}. Далее новосинтезированный участок лигируется лигазой 1{{sfn|Кребс, Голдштейн, Килпатрик|2017|с=398}}.


Механизм распознавания повреждённых оснований обычно основан на том, что они нарушают структуру двойной спирали ДНК и «выскакивают» из спирали, попадая непосредственно в [[Активный центр фермента|активный центр]] гликозилазы{{sfn|Кребс, Голдштейн, Килпатрик|2017|с=398—399}}.
Механизм распознавания повреждённых оснований обычно основан на том, что они нарушают структуру двойной спирали ДНК и «выскакивают» из спирали, попадая непосредственно в [[Активный центр фермента|активный центр]] гликозилазы{{sfn|Кребс, Голдштейн, Килпатрик|2017|с=398—399}}.
Строка 17: Строка 17:


== Клиническое значение ==
== Клиническое значение ==
Дефекты в различных путях репарации ДНК способствуют развитию [[Рак (заболевание)|рака]], и BER не является исключением. В самых разных организмов нарушения в [[ген]]ах, белковые продукты которых задействованы в BER, приводят к резкому повышению частоты [[Мутации|мутаций]], что является предпосылкой для раковых заболеваний. Действительно, соматические мутации, затрагивающие ДНК-полимеразу β, наблюдаются в 30 % случаев рака, и некоторые из них вызывают злокачественную трансформацию у [[Мыши|мышей]]<ref name="pmid15280658">{{cite pmid|15280658}}</ref>. Активность репарации повреждённых оснований и нуклеотидов в клетках [[Голый землекоп|голого землекопа]] гораздо выше, чем в клетках мыши и может быть ответственна за то, что средняя продолжительность жизни этого грызуна 30 лет (тогда как у обычной мыши — полтора года)<ref>[https://scientificrussia.ru/news/issledovateli-ihbfm-so-ran-i-imkb-so-ran-ustanovili-vozmozhnuyu-prichinu-dolgozhitelstva-gologo-zemlekopa Исследователи ИХБФМ СО РАН и ИМКБ СО РАН установили возможную причину долгожительства голого землекопа], 9 ноября 2018 г.</ref>. Мутации ДНК-гликозилазы {{нп5|MUTYH||en|MUTYH}} повышают риск развития [[Рак толстой кишки|рака толстой кишки]]<ref name="pmid15931596">{{Cite pmid|15931596}}</ref>.
Дефекты в различных путях репарации ДНК способствуют развитию [[Рак (заболевание)|рака]], и BER не является исключением. В самых разных организмах нарушения в [[ген]]ах, белковые продукты которых задействованы в BER, приводят к резкому повышению частоты [[Мутации|мутаций]], что является предпосылкой для раковых заболеваний. Действительно, соматические мутации, затрагивающие ДНК-полимеразу β, наблюдаются в 30 % случаев рака, и некоторые из них вызывают злокачественную трансформацию у [[Мыши|мышей]]<ref name="pmid15280658">{{cite pmid|15280658}}</ref>. Активность репарации повреждённых оснований и нуклеотидов в клетках [[Голый землекоп|голого землекопа]] гораздо выше, чем в клетках мыши и может быть ответственна за то, что средняя продолжительность жизни этого грызуна 30 лет (тогда как у обычной мыши — полтора года)<ref>[https://scientificrussia.ru/news/issledovateli-ihbfm-so-ran-i-imkb-so-ran-ustanovili-vozmozhnuyu-prichinu-dolgozhitelstva-gologo-zemlekopa Исследователи ИХБФМ СО РАН и ИМКБ СО РАН установили возможную причину долгожительства голого землекопа] {{Wayback|url=https://scientificrussia.ru/news/issledovateli-ihbfm-so-ran-i-imkb-so-ran-ustanovili-vozmozhnuyu-prichinu-dolgozhitelstva-gologo-zemlekopa |date=20190329225904 }}, 9 ноября 2018 г.</ref>. Мутации ДНК-гликозилазы {{нп5|MUTYH||en|MUTYH}} повышают риск развития [[Рак толстой кишки|рака толстой кишки]]<ref name="pmid15931596">{{Cite pmid|15931596}}</ref>.


== Примечания ==
== Примечания ==

Текущая версия от 05:18, 6 января 2024

Основные этапы эксцизионной репарации оснований: справа — репарация короткими заплатками, слева — репарация точечными заплатками

Эксцизио́нная репара́ция основа́ний (англ. base excision repair (BER)) — система репарации ДНК, удаляющая из двойной спирали[англ.] повреждённые азотистые основания. BER начинается с распознавания и удаления повреждённого основания ДНК-гликозилазами[англ.]. Далее особая эндонуклеаза удаляет фрагмент цепи, содержащий нуклеотид без основания, и ДНК-полимеразы застраивают брешь. Различают BER с точечной заплаткой, при которой удаляется только нуклеотид, лишённый азотистого основания, или BER с короткой заплаткой, при которой удаляется короткий фрагмент, содержащий повреждённый нуклеотид[1].

BER начинается с распознавания ДНК-гликозилазами повреждённых оснований (например, алкилированных), неспаренных оснований, а также урацила, который в норме отсутствует в ДНК и есть только в РНК. Гликозилаза разрезает связь азотистого основания с дезоксирибозой, удаляя его из ДНК. Некоторые гликозилазы также являются лиазами и вносят разрыв в цепь ДНК с 3'-конца повреждённого нуклеотида, используя аминогруппу в качестве атакующей группы. Дальнейший ход репарации определяется тем, участвовала ли лиаза в удалении повреждения[2].

Если гликозилаза функционировала как лиаза, то BER идёт по пути с точечной заплаткой. AP-эндонуклеаза[англ.] APE1 вносит разрыв у 5'-конца повреждённого нуклеотида, и он покидает ДНК. Образовавшаяся брешь застраивается ДНК-полимеразой β[англ.] и лигируется ДНК-лигазой XRCC1[англ.]/Lig3[3].

Схематическое представление AP-сайта

Если лиазной активности не было, то с образовавшимся AP-сайтом[англ.] (то есть апуриновым и апиримидиновым) связывается эндонуклеаза APE1, которая удаляет повреждённый нуклеотид и от двух до десяти его соседей. Далее репликативный комплекс, состоящий из ДНК-полимераз δ[англ.] и ε[англ.] и других компонентов, застраивает брешь, вытесняя близлежащие нормальные нуклеотиды. Вытесненные при этом нормальные нуклеотиды удаляются эндонуклеазой FEN1[англ.]. Далее новосинтезированный участок лигируется лигазой 1[3].

Механизм распознавания повреждённых оснований обычно основан на том, что они нарушают структуру двойной спирали ДНК и «выскакивают» из спирали, попадая непосредственно в активный центр гликозилазы[4].

Повреждённые основания не всегда подлежат удалению. Например, при репарации метилированных адениновых нуклеотидов метильная группа окисляется специальными ферментами до CH2OH, далее высвобождается формальдегид (HCHO) и исходная структура аденина восстанавливается[5].

Выбор пути BER — с точечной или с короткой заплаткой — может также зависеть от стадии клеточного цикла и степени дифференцировки клетки[6]. Кроме того, два механизма используются разными организмами с различной частотой. Например, у дрожжей Saccharomyces cerevisiae, по-видимому, отсутствует репарация точечной заплаткой, так как у них не выявлено гомологов человеческих генов, белковые продукты которых участвуют в этом пути[7].

Клиническое значение

[править | править код]

Дефекты в различных путях репарации ДНК способствуют развитию рака, и BER не является исключением. В самых разных организмах нарушения в генах, белковые продукты которых задействованы в BER, приводят к резкому повышению частоты мутаций, что является предпосылкой для раковых заболеваний. Действительно, соматические мутации, затрагивающие ДНК-полимеразу β, наблюдаются в 30 % случаев рака, и некоторые из них вызывают злокачественную трансформацию у мышей[8]. Активность репарации повреждённых оснований и нуклеотидов в клетках голого землекопа гораздо выше, чем в клетках мыши и может быть ответственна за то, что средняя продолжительность жизни этого грызуна 30 лет (тогда как у обычной мыши — полтора года)[9]. Мутации ДНК-гликозилазы MUTYH[англ.] повышают риск развития рака толстой кишки[10].

Примечания

[править | править код]
  1. Кребс, Голдштейн, Килпатрик, 2017, с. 397.
  2. Кребс, Голдштейн, Килпатрик, 2017, с. 397—398.
  3. 1 2 Кребс, Голдштейн, Килпатрик, 2017, с. 398.
  4. Кребс, Голдштейн, Килпатрик, 2017, с. 398—399.
  5. Кребс, Голдштейн, Килпатрик, 2017, с. 399.
  6. Fortini P., Dogliotti E. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. (англ.) // DNA Repair. — 2007. — 1 April (vol. 6, no. 4). — P. 398—409. — doi:10.1016/j.dnarep.2006.10.008. — PMID 17129767. [исправить]
  7. Gellon L., Carson D. R., Carson J. P., Demple B. Intrinsic 5'-deoxyribose-5-phosphate lyase activity in Saccharomyces cerevisiae Trf4 protein with a possible role in base excision DNA repair. (англ.) // DNA Repair. — 2008. — 1 February (vol. 7, no. 2). — P. 187—198. — doi:10.1016/j.dnarep.2007.09.009. — PMID 17983848. [исправить]
  8. Starcevic D., Dalal S., Sweasy J. B. Is there a link between DNA polymerase beta and cancer? (англ.) // Cell Cycle (Georgetown, Tex.). — 2004. — August (vol. 3, no. 8). — P. 998—1001. — PMID 15280658. [исправить]
  9. Исследователи ИХБФМ СО РАН и ИМКБ СО РАН установили возможную причину долгожительства голого землекопа Архивная копия от 29 марта 2019 на Wayback Machine, 9 ноября 2018 г.
  10. Farrington S. M., Tenesa A., Barnetson R., Wiltshire A., Prendergast J., Porteous M., Campbell H., Dunlop M. G. Germline susceptibility to colorectal cancer due to base-excision repair gene defects. (англ.) // American Journal Of Human Genetics. — 2005. — July (vol. 77, no. 1). — P. 112—119. — doi:10.1086/431213. — PMID 15931596. [исправить]

Литература

[править | править код]
  • Кребс Дж., Голдштейн Э., Килпатрик С. Гены по Льюину. — М.: Лаборатория знаний, 2017. — 919 с. — ISBN 978-5-906828-24-8.