Унитарное пространство: различия между версиями
Перейти к навигации
Перейти к поиску
[отпатрулированная версия] | [отпатрулированная версия] |
Содержимое удалено Содержимое добавлено
Нет описания правки |
|||
Строка 24: | Строка 24: | ||
== Cм. также == |
== Cм. также == |
||
* [[Эрмитова форма]] |
|||
* [[Эрмитов оператор]] |
* [[Эрмитов оператор]] |
||
Версия от 08:50, 27 июля 2019
Унитарное пространство — векторное пространство над полем комплексных чисел с эрмитовым скалярным произведением, комплексный аналог евклидова пространства.
Определение
Эрмитовым скалярным произведением в векторном пространстве над полем комплексных чисел называется полуторалинейная форма удовлетворяющая дополнительному условию[1]:
Другими словами, это означает, что функция удовлетворяющая следующим условиям[1]:
- 1) (линейность скалярного произведения по первому аргументу)
- и справедливы равенства:
(иногда в определении вместо этого берут линейность по второму аргументу, что не принципиально)
- 2) (эрмитовость скалярного произведения)
- справедливо равенство ,
- 3) (положительная определенность скалярного произведения)
- имеем и причем только при .
Свойства
- Над действительным пространством условие полуторалинейности эквивалентно билинейности, а эрмитовость — симметричности, и скалярное произведение становится положительно определенной билинейной симметричной функцией .
- Полуторалинейная форма является эрмитовой тогда и только тогда[1], когда функция принимает только вещественные значения для всех векторов
Cм. также
Литература
- Гельфанд И. М. Лекции по линейной алгебре М.: Наука, 1971.
- Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — Физматлит, Москва, 2009.
Примечания
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |