Циркуляция векторного поля: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
DeHost (обсуждение | вклад) Нет описания правки |
Avosco (обсуждение | вклад) м орфография |
||
Строка 3: | Строка 3: | ||
<math>C=\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{l}}=\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy+F_{z}dz}</math> |
<math>C=\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{l}}=\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy+F_{z}dz}</math> |
||
где <math>\mathbf{F}=\{F_{x},F_{y},F_{z}\}</math> |
где <math>\mathbf{F}=\{F_{x},F_{y},F_{z}\}</math> — [[Векторное поле|векторное поле]] (или вектор-функция), определенное в некоторой [[Область_(математика)|области]] D, содержащей в себе контур '''Γ''', |
||
<math>d\mathbf{l}=\{dx,dy,dz\}</math> |
<math>d\mathbf{l}=\{dx,dy,dz\}</math> — бесконечно малое приращение [[Радиус-вектор|радиус-вектора]] <math>\mathbf{l}</math> вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру. |
||
*Определение приведено для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на |
* Определение приведено для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на произвольную размерность пространства. |
||
== Свойства циркуляции == |
== Свойства циркуляции == |
||
[[ |
[[Файл:Circulation-additivity.svg|200px|frame|Свойство аддитивности циркуляции: циркуляция по контуру <math>\Gamma</math> есть сумма циркуляций по контурам <math>\Gamma _{1}</math> и <math>\Gamma _{2}</math>, то есть <math>C = C_1 + C_2</math>]] |
||
'''[[Аддитивность]]''' |
'''[[Аддитивность]]''' |
||
Строка 30: | Строка 30: | ||
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ |
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ |
||
F_{x} & F_{y} & F_{z} \\ |
F_{x} & F_{y} & F_{z} \\ |
||
\end{matrix} \right|</math> |
\end{matrix} \right|</math> — [[Ротор_(математика)|Ротор]] (вихрь) вектора '''F'''. |
||
В случае, если контур плоский, например лежит в плоскости OXY, справедлива [[Формула_Грина|формула Грина]] |
В случае, если контур плоский, например лежит в плоскости OXY, справедлива [[Формула_Грина|формула Грина]] |
||
Строка 36: | Строка 36: | ||
<math>\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy}=\iint\limits_{\operatorname{int}\Gamma }{\left( \frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y} \right)dxdy}</math> |
<math>\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy}=\iint\limits_{\operatorname{int}\Gamma }{\left( \frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y} \right)dxdy}</math> |
||
где <math>\operatorname{int}\Gamma </math> |
где <math>\operatorname{int}\Gamma </math> — плоскость, ограничиваемая контуром (внутренность контура). |
||
== Физическая интерпретация == |
== Физическая интерпретация == |
||
[[ |
[[Файл:Циркуляция.jpg|200px|thumb|right|Физическая интерпретация циркуляции: Работа поля по замкнутому контуру]] |
||
Если '''F''' — некоторое [[Силовое_поле_(физика)|силовое поле]], тогда циркуляция этого поля по некоторому произвольному контуру '''Γ''' есть [[Работа_(физика)|работа]] этого поля при перемещении точки вдоль контура '''Г'''. Отсюда непосредственно следует критерий [[Потенциальное_поле|потенциальности поля]]: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль. |
Если '''F''' — некоторое [[Силовое_поле_(физика)|силовое поле]], тогда циркуляция этого поля по некоторому произвольному контуру '''Γ''' есть [[Работа_(физика)|работа]] этого поля при перемещении точки вдоль контура '''Г'''. Отсюда непосредственно следует критерий [[Потенциальное_поле|потенциальности поля]]: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль. |
||
Строка 52: | Строка 52: | ||
<math>C = ul,</math> |
<math>C = ul,</math> |
||
поскольку именно скорость <math>u</math> установится в этом случае в итоге всюду в канале, а величина циркуляции ''C'' даст ( |
поскольку именно скорость <math>u</math> установится в этом случае в итоге всюду в канале, а величина циркуляции ''C'' даст (обобщённый) импульс для жидкости единичной плотности, сопряженный (обобщенной) координате, характеризующей положение жидкости как целого в канале, соответствующей, несколько упрощая, положению одиночной «пылинки» в жидкости, измеренному по линейке, изгибающейся вдоль канала. |
||
Так как при затвердевании стенок канала нормальная к контуру компонента скорости будет погашена (вообразим, что это происходит перед тем, как тангенциальная скорость в канале всюду становится одинаковой вследствие несжимаемости жидкости), жидкость по каналу будет сразу после затвердевания двигаться с тангенциальной составляющей исходной скорости <math>v_{\tau }</math>. Тогда циркуляцию можно представить в виде |
Так как при затвердевании стенок канала нормальная к контуру компонента скорости будет погашена (вообразим, что это происходит перед тем, как тангенциальная скорость в канале всюду становится одинаковой вследствие несжимаемости жидкости), жидкость по каналу будет сразу после затвердевания двигаться с тангенциальной составляющей исходной скорости <math>v_{\tau }</math>. Тогда циркуляцию можно представить в виде |
||
Строка 58: | Строка 58: | ||
<math>C=\oint\limits_{\Gamma }{v_{\tau }dl}=\oint\limits_{\Gamma }{\mathbf{v}d\mathbf{l}}</math> |
<math>C=\oint\limits_{\Gamma }{v_{\tau }dl}=\oint\limits_{\Gamma }{\mathbf{v}d\mathbf{l}}</math> |
||
где dl |
где dl — элемент длины контура. |
||
Позже понятие «циркуляция» было распространено на любые векторные поля, даже такие, в которых «циркулировать» в буквальном смысле нечему. |
Позже понятие «циркуляция» было распространено на любые векторные поля, даже такие, в которых «циркулировать» в буквальном смысле нечему. |
Версия от 07:34, 25 марта 2009
Циркуля́цией ве́кторного по́ля называется криволинейный интеграл второго рода, взятый по произвольному замкнутому контуру Γ. По определению
где — векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур Γ, — бесконечно малое приращение радиус-вектора вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру.
- Определение приведено для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на произвольную размерность пространства.
Свойства циркуляции
Циркуляция по контуру, ограничивающему несколько смежных поверхностей, равна сумме циркуляций по контурам, ограничивающим каждую поверхность в отдельности, то есть
Циркуляция вектора F по произвольному контуру Г равна потоку вектора через произвольную поверхность S, ограниченную данным контуром.
где
— Ротор (вихрь) вектора F.
В случае, если контур плоский, например лежит в плоскости OXY, справедлива формула Грина
где — плоскость, ограничиваемая контуром (внутренность контура).
Физическая интерпретация
Если F — некоторое силовое поле, тогда циркуляция этого поля по некоторому произвольному контуру Γ есть работа этого поля при перемещении точки вдоль контура Г. Отсюда непосредственно следует критерий потенциальности поля: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль.
Историческая справка
Термин «циркуляция» был первоначально введен в гидродинамике для расчета движения жидкости по замкнутому каналу. Рассмотрим течение идеальной несжимаемой жидкости. Выберем произвольный контур Γ. Мысленно представим, что мы (мгновенно) заморозили всю жидкость в объеме, за исключением тонкого канала постоянного сечения, включающего в себя контур Γ. Тогда, в зависимости от первоначального характера течения жидкости, она будет либо неподвижной в канале, либо двигаться вдоль контура (циркулировать). В качестве характеристики такого движения берут величину равную произведению средней скорости движения жидкости по каналу на длину контура l.
поскольку именно скорость установится в этом случае в итоге всюду в канале, а величина циркуляции C даст (обобщённый) импульс для жидкости единичной плотности, сопряженный (обобщенной) координате, характеризующей положение жидкости как целого в канале, соответствующей, несколько упрощая, положению одиночной «пылинки» в жидкости, измеренному по линейке, изгибающейся вдоль канала.
Так как при затвердевании стенок канала нормальная к контуру компонента скорости будет погашена (вообразим, что это происходит перед тем, как тангенциальная скорость в канале всюду становится одинаковой вследствие несжимаемости жидкости), жидкость по каналу будет сразу после затвердевания двигаться с тангенциальной составляющей исходной скорости . Тогда циркуляцию можно представить в виде
где dl — элемент длины контура.
Позже понятие «циркуляция» было распространено на любые векторные поля, даже такие, в которых «циркулировать» в буквальном смысле нечему.
Литература
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т.3. М.: «Наука», 1960.
- Савельев И. В. Курс общей физики. Т2. М.: Астрель • АСТ, 2004.