Циркуляция векторного поля: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
м орфография
Строка 3: Строка 3:
<math>C=\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{l}}=\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy+F_{z}dz}</math>
<math>C=\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{l}}=\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy+F_{z}dz}</math>


где <math>\mathbf{F}=\{F_{x},F_{y},F_{z}\}</math> — [[Векторное поле|векторное поле]] (или вектор-функция), определенное в некоторой [[Область_(математика)|области]] D, содержащей в себе контур '''Γ''',
где <math>\mathbf{F}=\{F_{x},F_{y},F_{z}\}</math> — [[Векторное поле|векторное поле]] (или вектор-функция), определенное в некоторой [[Область_(математика)|области]] D, содержащей в себе контур '''Γ''',
<math>d\mathbf{l}=\{dx,dy,dz\}</math> — бесконечно малое приращение [[Радиус-вектор|радиус-вектора]] <math>\mathbf{l}</math> вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру.
<math>d\mathbf{l}=\{dx,dy,dz\}</math> — бесконечно малое приращение [[Радиус-вектор|радиус-вектора]] <math>\mathbf{l}</math> вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру.


*Определение приведено для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на произвульную размерность пространства.
* Определение приведено для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на произвольную размерность пространства.


== Свойства циркуляции ==
== Свойства циркуляции ==
[[Image:Circulation-additivity.svg|200px|frame|Свойство аддитивности циркуляции: циркуляция по контуру <math>\Gamma</math> есть сумма циркуляций по контурам <math>\Gamma _{1}</math> и <math>\Gamma _{2}</math>, то есть <math>C = C_1 + C_2</math>]]
[[Файл:Circulation-additivity.svg|200px|frame|Свойство аддитивности циркуляции: циркуляция по контуру <math>\Gamma</math> есть сумма циркуляций по контурам <math>\Gamma _{1}</math> и <math>\Gamma _{2}</math>, то есть <math>C = C_1 + C_2</math>]]


'''[[Аддитивность]]'''
'''[[Аддитивность]]'''
Строка 30: Строка 30:
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\
F_{x} & F_{y} & F_{z} \\
F_{x} & F_{y} & F_{z} \\
\end{matrix} \right|</math> — [[Ротор_(математика)|Ротор]] (вихрь) вектора '''F'''.
\end{matrix} \right|</math> — [[Ротор_(математика)|Ротор]] (вихрь) вектора '''F'''.


В случае, если контур плоский, например лежит в плоскости OXY, справедлива [[Формула_Грина|формула Грина]]
В случае, если контур плоский, например лежит в плоскости OXY, справедлива [[Формула_Грина|формула Грина]]
Строка 36: Строка 36:
<math>\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy}=\iint\limits_{\operatorname{int}\Gamma }{\left( \frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y} \right)dxdy}</math>
<math>\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy}=\iint\limits_{\operatorname{int}\Gamma }{\left( \frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y} \right)dxdy}</math>


где <math>\operatorname{int}\Gamma </math> — плоскость, ограничиваемая контуром (внутренность контура).
где <math>\operatorname{int}\Gamma </math> — плоскость, ограничиваемая контуром (внутренность контура).


== Физическая интерпретация ==
== Физическая интерпретация ==
[[Изображение:Циркуляция.jpg|200px|thumb|right|Физическая интерпретация циркуляции: Работа поля по замкнутому контуру]]
[[Файл:Циркуляция.jpg|200px|thumb|right|Физическая интерпретация циркуляции: Работа поля по замкнутому контуру]]


Если '''F''' — некоторое [[Силовое_поле_(физика)|силовое поле]], тогда циркуляция этого поля по некоторому произвольному контуру '''Γ''' есть [[Работа_(физика)|работа]] этого поля при перемещении точки вдоль контура '''Г'''. Отсюда непосредственно следует критерий [[Потенциальное_поле|потенциальности поля]]: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль.
Если '''F''' — некоторое [[Силовое_поле_(физика)|силовое поле]], тогда циркуляция этого поля по некоторому произвольному контуру '''Γ''' есть [[Работа_(физика)|работа]] этого поля при перемещении точки вдоль контура '''Г'''. Отсюда непосредственно следует критерий [[Потенциальное_поле|потенциальности поля]]: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль.
Строка 52: Строка 52:
<math>C = ul,</math>
<math>C = ul,</math>


поскольку именно скорость <math>u</math> установится в этом случае в итоге всюду в канале, а величина циркуляции ''C'' даст (обобщенный) импульс для жидкости единичной плотности, сопряженный (обобщенной) координате, характеризующей положение жидкости как целого в канале, соответствующей, несколько упрощая, положению одиночной «пылинки» в жидкости, измеренному по линейке, изгибающейся вдоль канала.
поскольку именно скорость <math>u</math> установится в этом случае в итоге всюду в канале, а величина циркуляции ''C'' даст (обобщённый) импульс для жидкости единичной плотности, сопряженный (обобщенной) координате, характеризующей положение жидкости как целого в канале, соответствующей, несколько упрощая, положению одиночной «пылинки» в жидкости, измеренному по линейке, изгибающейся вдоль канала.


Так как при затвердевании стенок канала нормальная к контуру компонента скорости будет погашена (вообразим, что это происходит перед тем, как тангенциальная скорость в канале всюду становится одинаковой вследствие несжимаемости жидкости), жидкость по каналу будет сразу после затвердевания двигаться с тангенциальной составляющей исходной скорости <math>v_{\tau }</math>. Тогда циркуляцию можно представить в виде
Так как при затвердевании стенок канала нормальная к контуру компонента скорости будет погашена (вообразим, что это происходит перед тем, как тангенциальная скорость в канале всюду становится одинаковой вследствие несжимаемости жидкости), жидкость по каналу будет сразу после затвердевания двигаться с тангенциальной составляющей исходной скорости <math>v_{\tau }</math>. Тогда циркуляцию можно представить в виде
Строка 58: Строка 58:
<math>C=\oint\limits_{\Gamma }{v_{\tau }dl}=\oint\limits_{\Gamma }{\mathbf{v}d\mathbf{l}}</math>
<math>C=\oint\limits_{\Gamma }{v_{\tau }dl}=\oint\limits_{\Gamma }{\mathbf{v}d\mathbf{l}}</math>


где dl — элемент длины контура.
где dl — элемент длины контура.


Позже понятие «циркуляция» было распространено на любые векторные поля, даже такие, в которых «циркулировать» в буквальном смысле нечему.
Позже понятие «циркуляция» было распространено на любые векторные поля, даже такие, в которых «циркулировать» в буквальном смысле нечему.

Версия от 07:34, 25 марта 2009

Циркуля́цией ве́кторного по́ля называется криволинейный интеграл второго рода, взятый по произвольному замкнутому контуру Γ. По определению

где  — векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур Γ,  — бесконечно малое приращение радиус-вектора вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру.

  • Определение приведено для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на произвольную размерность пространства.

Свойства циркуляции

Свойство аддитивности циркуляции: циркуляция по контуру есть сумма циркуляций по контурам и , то есть

Аддитивность

Циркуляция по контуру, ограничивающему несколько смежных поверхностей, равна сумме циркуляций по контурам, ограничивающим каждую поверхность в отдельности, то есть


Формула Стокса

Циркуляция вектора F по произвольному контуру Г равна потоку вектора через произвольную поверхность S, ограниченную данным контуром.

где

 — Ротор (вихрь) вектора F.

В случае, если контур плоский, например лежит в плоскости OXY, справедлива формула Грина

где  — плоскость, ограничиваемая контуром (внутренность контура).

Физическая интерпретация

Физическая интерпретация циркуляции: Работа поля по замкнутому контуру

Если F — некоторое силовое поле, тогда циркуляция этого поля по некоторому произвольному контуру Γ есть работа этого поля при перемещении точки вдоль контура Г. Отсюда непосредственно следует критерий потенциальности поля: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль.

Историческая справка

Термин «циркуляция» был первоначально введен в гидродинамике для расчета движения жидкости по замкнутому каналу. Рассмотрим течение идеальной несжимаемой жидкости. Выберем произвольный контур Γ. Мысленно представим, что мы (мгновенно) заморозили всю жидкость в объеме, за исключением тонкого канала постоянного сечения, включающего в себя контур Γ. Тогда, в зависимости от первоначального характера течения жидкости, она будет либо неподвижной в канале, либо двигаться вдоль контура (циркулировать). В качестве характеристики такого движения берут величину равную произведению средней скорости движения жидкости по каналу на длину контура l.

поскольку именно скорость установится в этом случае в итоге всюду в канале, а величина циркуляции C даст (обобщённый) импульс для жидкости единичной плотности, сопряженный (обобщенной) координате, характеризующей положение жидкости как целого в канале, соответствующей, несколько упрощая, положению одиночной «пылинки» в жидкости, измеренному по линейке, изгибающейся вдоль канала.

Так как при затвердевании стенок канала нормальная к контуру компонента скорости будет погашена (вообразим, что это происходит перед тем, как тангенциальная скорость в канале всюду становится одинаковой вследствие несжимаемости жидкости), жидкость по каналу будет сразу после затвердевания двигаться с тангенциальной составляющей исходной скорости . Тогда циркуляцию можно представить в виде

где dl — элемент длины контура.

Позже понятие «циркуляция» было распространено на любые векторные поля, даже такие, в которых «циркулировать» в буквальном смысле нечему.

Литература

  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т.3. М.: «Наука», 1960.
  • Савельев И. В. Курс общей физики. Т2. М.: Астрель • АСТ, 2004.