TCP: различия между версиями
[непроверенная версия] | [отпатрулированная версия] |
Qldor (обсуждение | вклад) |
|||
Строка 51: | Строка 51: | ||
|- align="center" |
|- align="center" |
||
! colspan="1"|160 |
! colspan="1"|160 |
||
| colspan="32" bgcolor="#FFDDDD"|Опции (необязательное) |
| colspan="32" bgcolor="#FFDDDD"|Опции (необязательное, но используется практически всегда) |
||
|- align="center" |
|- align="center" |
||
! colspan="1"|160/192+ |
! colspan="1"|160/192+ |
Версия от 08:00, 24 июня 2010
TCP | |
---|---|
Название | Transmission Control Protocol |
Уровень (по модели OSI) | Транспортный |
Семейство | TCP/IP |
Порт/ID | 6/IP |
Спецификация | RFC 793 / STD 7 |
Основные реализации | UNIX, Linux, BSD, Windows |
Расширяемость | Опции |
Медиафайлы на Викискладе |
Transmission Control Protocol (TCP) (протокол управления передачей) — один из основных сетевых протоколов Интернета, предназначенный для управления передачей данных в сетях и подсетях TCP/IP.
Выполняет функции протокола транспортного уровня модели OSI.
TCP — это транспортный механизм, предоставляющий поток данных, с предварительной установкой соединения, за счёт этого дающий уверенность в достоверности получаемых данных, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета (см. также T/TCP). В отличие от UDP гарантирует, что приложение получит данные точно в такой же последовательности, в какой они были отправлены, и без потерь.
Реализация TCP, как правило, встроена в ядро системы, хотя есть и реализации TCP в контексте приложения.
Когда осуществляется передача от компьютера к компьютеру через Интернет, TCP работает на верхнем уровне между двумя конечными системами, например, веб-обозреватель и веб-сервер. Также TCP осуществляет надежную передачу потока байтов от одной программы на некотором компьютере к другой программе на другом компьютере. Программы для электронной почты и обмена файлами используют TCP. TCP контролирует длину сообщения, скорость обмена сообщениями, сетевой трафик.
Формат сегмента TCP
Бит | 0 — 3 | 4 — 9 | 10 — 15 | 16 — 31 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Порт источника | Порт назначения | ||||||||||||||||||||||||||||||
32 | Номер последовательности | |||||||||||||||||||||||||||||||
64 | Номер подтверждения | |||||||||||||||||||||||||||||||
96 | Смещение данных | Зарезервировано | Флаги | Окно | ||||||||||||||||||||||||||||
128 | Контрольная сумма | Указатель важности | ||||||||||||||||||||||||||||||
160 | Опции (необязательное, но используется практически всегда) | |||||||||||||||||||||||||||||||
160/192+ | Данные |
Порт источника
Порт источника идентифицирует порт, с которого отправлены пакеты.
Порт назначения
Порт назначения идентифицирует порт, на который отправлен пакет.
TCP-порты
Существует набор служб (использующих для передачи данных TCP), за которыми закреплены определенные порты:
- 20/21 — FTP
- 22 — SSH
- 23 — Telnet
- 25 — SMTP
- 80 — HTTP
- 110 — POP3
- 194 — IRC (Internet Relay Chat)
- 443 — HTTPS (Secure HTTP)
- 1863 — MSN Messenger
- 2000 — Cisco SCCP (VoIP)
- 3389 — RDP
- 8080 — alternate HTTP
Номер последовательности
Номер последовательности выполняет две задачи:
- Если установлен флаг SYN, то это начальное значение номера последовательности, и первый байт данных — это номер последовательности плюс 1.
- В противном случае, если SYN не установлен, первый байт данных — номер последовательности
Поскольку поток TCP в общем случае может быть длиннее, чем число различных состояний этого поля, то все операции с номером последовательности должны выполняться по модулю 2^32. Это накладывает практическое ограничение на использование TCP. Если скорость передачи коммуникационной системы такова, чтобы в течение MSL (максимального времени жизни сегмента) произошло переполнение номера последовательности, то в сети может появиться два сегмента с одинаковым номером, относящихся к разным частям потока, и приёмник получит некорректные данные.
Номер подтверждения
Если установлен флаг ACK, то это поле содержит номер последовательности, ожидаемый получателем в следующий раз. Помечает этот сегмент как подтверждение получения.
Смещение данных
Это поле определяет размер заголовка пакета TCP в 32-битных словах. Минимальный размер составляет 5 слов, а максимальный — 15, что составляет 20 и 60 байт соответственно. Смещение считается от начала заголовка TCP.
Зарезервировано
Зарезервировано (6 бит) для будущего использования и должно устанавливаться в ноль. Из них два (7-й и 8-й) уже определены:
- CWR (Congestion Window Reduced) — Поле «Окно перегрузки уменьшено» — флаг установлен отправителем, чтоб указать, что получен пакет с установленным флагом ECE (RFC 3168)
- ECE (ECN-Echo) — Поле «Эхо ECN» — указывает, что данный узел способен на ECN (явное уведомление перегрузки) и для указания отправителю о перегрузках в сети (RFC 3168)
Флаги (управляющие биты)
Это поле содержит 6 битовых флагов:
- URG — Поле «Указатель важности» задействовано (англ. Urgent pointer field is significant)
- ACK — Поле «Номер подтверждения» задействовано (англ. Acknowledgement field is significant)
- PSH — (англ. Push function) инструктирует получателя протолкнуть данные, накопившиеся в приемном буфере, в приложение пользователя
- RST — Оборвать соединения, сбросить буфер (очистка буфера) (англ. Reset the connection)
- SYN — Синхронизация номеров последовательности (англ. Synchronize sequence numbers)
- FIN (англ. final, бит) — флаг, будучи установлен, указывает на завершение соединения (англ. FIN bit used for connection termination).
Контрольная сумма
Поле контрольной суммы — это 16-битное дополнение суммы всех 16-битных слов заголовка и текста. Если сегмент содержит нечетное число октетов в заголовке /или тексте, последние октеты дополняются справа 8 нулями для выравнивания по 16-битовой границе. Биты заполнения (0) не передаются в сегменте и служат только для расчёта контрольной суммы. При расчёте контрольной суммы значение самого поля контрольной суммы принимается равным 0.
Указатель важности
16-битовое значение положительного смещения от порядкового номера в данном сегменте. Это поле указывает порядковый номер октета которым заканчиваются важные (urgent) данные. Поле принимается во внимание только для пакетов с установленным флагом URG.
Механизм действия протокола
В отличие от традиционной альтернативы — UDP, который может сразу же начать передачу пакетов, TCP устанавливает соединения, которые должны быть созданы перед передачей данных. TCP соединение можно разделить на 3 стадии:
- Установка соединения
- Передача данных
- Завершение соединения
Состояния сеанса TCP
Состояния сеанса TCP | |
---|---|
CLOSED | Начальное состояние узла. Фактически фиктивное |
LISTEN | Сервер ожидает запросов установления соединения от клиента |
SYN-SENT | Клиент отправил запрос серверу на установление соединения и ожидает ответа |
SYN-RECEIVED | Сервер получил запрос на соединение, отправил ответный запрос и ожидает подтверждения |
ESTABLISHED | Соединение установлено, идёт передача данных |
FIN-WAIT-1 | Одна из сторон (назовём её узел-1) завершает соединение, отправив сегмент с флагом FIN |
CLOSE-WAIT | Другая сторона (узел-2) переходит в это состояние, отправив, в свою очередь сегмент ACK и продолжает одностороннюю передачу |
FIN-WAIT-2 | Узел-1 получает ACK, продолжает чтение и ждёт получения сегмента с флагом FIN |
LAST-ACK | Узел-2 заканчивает передачу и отправляет сегмент с флагом FIN |
TIME-WAIT | Узел-1 получил сегмент с флагом FIN, отправил сегмент с флагом ACK и ждёт 2*MSL секунд, перед окончательным закрытием соединения |
CLOSING | Обе стороны инициировали закрытие соединения одновременно: после отправки сегмента с флагом FIN узел-1 также получает сегмент FIN, отправляет ACK и находится в ожидании сегмента ACK (подтверждения на свой запрос о разъединении) |
Установка соединения
Процесс начала сеанса TCP называется «тройным рукопожатием».
1. Клиент, который намеревается установить соединение, посылает серверу сегмент с номером последовательности и флагом SYN.
- Сервер получает сегмент, запоминает номер последовательности и пытается создать сокет (буфера и управляющие структуры памяти) для обслуживания нового клиента.
- В случае успеха сервер посылает клиенту сегмент с номером последовательности и флагами SYN и ACK, и переходит в состояние SYN-RECEIVED.
- В случае неудачи сервер посылает клиенту сегмент с флагом RST.
- Сервер получает сегмент, запоминает номер последовательности и пытается создать сокет (буфера и управляющие структуры памяти) для обслуживания нового клиента.
2. Если клиент получает сегмент с флагом SYN, то он запоминает номер последовательности и посылает сегмент с флагом ACK.
- Если он одновременно получает и флаг ACK (что обычно и происходит), то он переходит в состояние ESTABLISHED.
- Если клиент получает сегмент с флагом RST, то он прекращает попытки соединиться.
- Если клиент не получает ответа в течение 10 секунд, то он повторяет процесс соединения заново.
3. Если сервер в состоянии SYN-RECEIVED получает сегмент с флагом ACK, то он переходит в состояние ESTABLISHED.
- В противном случае после тайм-аута он закрывает сокет и переходит в состояние CLOSED.
Процесс называется «тройным рукопожатием», так как несмотря на то что возможен процесс установления соединения с использованием 4 сегментов (SYN в сторону сервера, ACK в сторону клиента, SYN в сторону клиента, ACK в сторону сервера), на практике для экономии времени используется 3 сегмента.
Пример базового 3-этапного согласования:
TCP A TCP B 1. CLOSED LISTEN 2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED 3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED 4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED 5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED
В строке 2 на рисунке 7 TCP A начинает передачу сегмента SYN, говорящего об использовании номеров последовательности, начиная со 100. В строке 3 TCP B передает SYN и подтверждение для принятого SYN в адрес TCP A. Надо отметить, что поле подтверждения показывает ожидание TCP B приема номера последовательности 101, подтверждающего SYN с номером 100.
В строке 4 TCP A отвечает пустым сегментом с подтверждением ACK для сегмента SYN от TCP B; в строке 5 TCP A передает некоторые данные. Отметим, что номер последовательности сегмента в строке 5 совпадает с номером в строке 4, поскольку ACK не занимает пространства номеров последовательности (если это сделать, придется подтверждать подтверждения — ACK для ACK!).
Передача данных
При обмене данными приемник использует номер последовательности, содержащийся в получаемых сегментах, для восстановления их исходного порядка. Приемник уведомляет передающую сторону о номере последовательности, до которой он успешно получил данные, включая его в поле «номер подтверждения». Все получаемые данные, относящиеся к промежутку подтвержденных последовательностей, игнорируются. Если полученный сегмент содержит номер последовательности больший, чем ожидаемый, то данные из сегмента буферизируются, но номер подтвержденной последовательности не изменяется. Если впоследствии будет принят сегмент, относящийся к ожидаемому номеру последовательности, то порядок данных будет автоматически восстановлен исходя из номеров последовательностей в сегментах.
Для того, чтобы передающая сторона не отправляла данные интенсивнее, чем их может обработать приемник, TCP содержит средства управления потоком. Для этого используется поле «окно». В сегментах, направляемых от приемника передающей стороне в поле «окно» указывается текущий размер приемного буфера. Передающая сторона сохраняет размер окна и отправляет данных не более, чем указал приемник. Если приемник указал нулевой размер окна, то передача данных в направлении этого узла не происходит, до тех пор пока приемник не сообщит о большем размере окна.
В некоторых случаях передающее приложение может явно затребовать протолкнуть данные до некоторой последовательности принимающему приложению, не буферизируя их. Для этого используется флаг PSH. Если в полученном сегменте обнаруживается флаг PSH, то реализация TCP отдает все буферизированные на текущий момент данные принимающему приложению. «Проталкивание» используется, например, в интерактивных приложениях. В сетевых терминалах нет смысла ожидать ввода пользователя после того, как он закончил набирать команду. Поэтому последний сегмент, содержащий команду, обязан содержать флаг PSH, чтобы приложение на принимающей стороне смогло начать её выполнение.
Завершение соединения
Завершение соединения можно рассмотреть в три этапа:
- Посылка серверу от клиента флагов FIN и ACK на завершения соединения.
- Сервер посылает клиенту флаги ответа ACK , FIN, что соединение закрыто.
- После получения этих флагов клиент закрывает соединение и в подтверждение отправляет серверу ACK , что соединение закрыто.
Известные проблемы
Максимальный размер сегмента
TCP требует явного указания максимального размера сегмента (MSS) в случае, если виртуальное соединение осуществляется через сегмент сети, где максимальный размер блока (MTU) менее, чем стандартный MTU Ethernet (1500 байт).
В протоколах туннелирования, таких как GRE, IPIP, а также PPPoE MTU туннеля меньше чем стандартный, поэтому сегмент TCP максимального размера имеет длину пакета больше, чем MTU. Поскольку фрагментация в подавляющем большинстве случаев запрещена, то такие пакеты отбрасываются.
Проявление этой проблемы выглядит как «зависание» соединений. При этом «зависание» может происходить в произвольные моменты времени, а именно тогда, когда отправитель использовал сегменты длиннее допустимого размера.
Для решения этой проблемы на маршрутизаторах применяются правила Firewall-а, добавляющие параметр MSS во все пакеты, инициирующие соединения, чтобы отправитель использовал сегменты допустимого размера.
MSS может так же управляться параметрами операционной системы.
Обнаружение ошибок при передаче данных
Хотя протокол осуществляет проверку контрольной суммы по каждому сегменту, используемый алгоритм считается слабым [1]. Так в 2008 году не обнаруженная сетевыми средствами ошибка в передаче одного бита, привела к остановке серверов системы Amazon Web Services [2].
В общем случае распределенным сетевым приложениям рекомендуется использовать дополнительные программные средства для гарантирования целостности передаваемой информации[3].
Атаки на протокол
Недостатки протокола проявляются в успешных теоретических и практических атаках, при которых злоумышленник может получить доступ к передаваемым данным, выдать себя за другую сторону или привести к отказу в работе системы.
Реализация
См. также
Ссылки
- RFC 793 — Transmission Control Protocol
- RFC 793 на русском
- Спецификация протокола TCP
Литература
- Терри Оглтри. Модернизация и ремонт сетей = Upgrading and Repairing Networks. — 4-е изд. — М.: «Вильямс», 2005. — С. 1328. — ISBN 0-7897-2817-6.
- Дуглас Камер. Сети TCP/IP, том 1. Принципы, протоколы и структура = Internetworking with TCP/IP, Vol. 1: Principles, Protocols and Architecture. — М.: «Вильямс», 2003. — С. 880. — ISBN 0-13-018380-6.
- Андрей Робачевский, Сергей Немнюгин, Ольга Стесик. Операционная система UNIX. — 2-е изд. — "БХВ-Петербург", 2007. — С. 656. — ISBN 5-94157-538-6.
В другом языковом разделе есть более полная статья Transmission Control Protocol (нем.). |