Билинейная форма: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 59: Строка 59:
* [[Билинейная операция]]
* [[Билинейная операция]]
* [[Билинейное преобразование]]
* [[Билинейное преобразование]]

== Литература ==
* ''Мальцев А. И.'' Основы линейной алгебры. М.: Наука, 1975.
* ''[[Гельфанд, Израиль Моисеевич|Гельфанд И. М.]]'' Лекции по линейной алгебре М.: Наука, 1971.
* ''[[Фаддеев, Дмитрий Константинович|Фаддеев Д. К.]]'' Лекции по алгебре. М.: Наука, 1984.
* ''Кострикин А. И.'' Введение в алгебру, М.: Наука, 1977.
* ''[[Беклемишев, Дмитрий Владимирович|Беклемишев Д. В.]] Аналитическая геометрия и линейная алгебра.-М.: Высш. шк. 1998, 320с.
* ''Гельфанд И. М.'', [http://www.nature.ru/db/msg.html?mid=1151602&uri=index.html Линейная алгебра]. Курс лекций.
* ''[[Шафаревич, Игорь Ростиславович|Шафаревич И. Р.]], Ремизов А. О.'' Линейная алгебра и геометрия, — Физматлит, Москва, 2009.


[[Категория:Линейная алгебра]]
[[Категория:Линейная алгебра]]

Версия от 10:28, 17 ноября 2011

Пусть есть векторное пространство над полем (чаще всего рассматриваются поля и ).

Билинейной формой называется функция , линейная по каждому из аргументов:

,
,
,
,

здесь и

Связанные определения

  • Билинейная форма называется симметричной, если для любых векторов .
  • Билинейная форма называется кососимметричной (антисимметричной), если для любых векторов .
  • Вектор называется ортогональным подпространству относительно , если для всех . Совокупность векторов , ортогональных подпространству относительно данной билинейной формы , называется ортогональным дополнением подпространства относительно .
  • Радикалом билинейной формы называется ортогональное дополнение самого пространства относительно , то есть совокупность векторов , для которых при всех .

Свойства

  • Множество всех билинейных форм , заданных на произвольном фиксированном пространстве, является линейным пространством.
  • Любую билинейную форму можно представить в виде суммы симметричной и кососимметричной форм.
  • При выбранном базисе в любая билинейная форма однозначно определяется матрицей

так что для любых векторов и

то есть

Это также означает, что билинейная форма полностью определяется своими значениями на векторах базиса.

Таким образом, размерность пространства есть .

Преобразование матрицы билинейной формы при переходе к новому базису

Матрица, представляющая билинейную форму в новом базисе, связана с матрицей, представляющей её в старом базисе, через матрицу, обратную матрице перехода к новому базису (матрице Якоби), через которую преобразуются координаты векторов.

Иными словами, если координаты вектора в старом базисе выражаются через координаты в новом через матрицу , или в матричной записи , то билинейная форма на любых векторах и запишется, как

,

то есть компоненты матрицы, представляющей билинейную форму в новом базисе, будут:

,

или, в матричной записи:

,
, где — матрица прямого преобразования координат .

См. также

Литература

  • Мальцев А. И. Основы линейной алгебры. М.: Наука, 1975.
  • Гельфанд И. М. Лекции по линейной алгебре М.: Наука, 1971.
  • Фаддеев Д. К. Лекции по алгебре. М.: Наука, 1984.
  • Кострикин А. И. Введение в алгебру, М.: Наука, 1977.
  • Беклемишев Д. В. Аналитическая геометрия и линейная алгебра.-М.: Высш. шк. 1998, 320с.
  • Гельфанд И. М., Линейная алгебра. Курс лекций.
  • Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — Физматлит, Москва, 2009.