Псевдотензор: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
оформление
м подстановка даты в шаблон:Нет ссылок
Строка 2: Строка 2:


Другое значение термину псевдотензор придавал, например, [[Эйнштейн]], называя так нетензорную величину, которая дает тензор после интегрирования по 4-мерному объему. Такое употребление также общепринято, по крайней мере по отношению к тем конкретным объектам, к которым их применял Эйнштейн.
Другое значение термину псевдотензор придавал, например, [[Эйнштейн]], называя так нетензорную величину, которая дает тензор после интегрирования по 4-мерному объему. Такое употребление также общепринято, по крайней мере по отношению к тем конкретным объектам, к которым их применял Эйнштейн.
{{нет источников}}
{{нет источников|дата=2012-05-11}}
[[Категория:Тензорное исчисление]]
[[Категория:Тензорное исчисление]]
[[Категория:Тензоры в ОТО]]
[[Категория:Тензоры в ОТО]]

Версия от 15:04, 12 мая 2012

Псевдотензор (в частном случае — псевдовектор, псевдоскаляр) — тензорная (векторная) величина, получающая дополнительный множитель (-1) по сравнению с истинными тензорами соответствующего ранга (векторами, скалярами) в случае преобразований координат с отрицательным детерминантом матрицы преобразования, то есть при преобразовании, меняющем ориентацию базиса. В остальном же псевдотензор (пcевдовектор, псевдоскаляр) преобразуется как истинный тензор (вектор, скаляр), при положительном детерминанте матрицы преобразования координат — в точности как истинный тензор (вектор, скаляр).

Другое значение термину псевдотензор придавал, например, Эйнштейн, называя так нетензорную величину, которая дает тензор после интегрирования по 4-мерному объему. Такое употребление также общепринято, по крайней мере по отношению к тем конкретным объектам, к которым их применял Эйнштейн.