Спектр сигнала: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
м r2.7.3) (бот добавил: lt:Dažnių spektras
м Перемещение 18 интервики-ссылок в Викиданные (d:Q62531)
Строка 56: Строка 56:
[[Категория:Радиотехника]]
[[Категория:Радиотехника]]
[[Категория:Радиофизика]]
[[Категория:Радиофизика]]

[[ar:طيف تردد]]
[[ast:Espectru de frecuencies]]
[[ca:Espectre de freqüències]]
[[cs:Frekvenční spektrum]]
[[de:Frequenzspektrum]]
[[en:Frequency spectrum]]
[[eo:Frekvenca spektro]]
[[es:Espectro de frecuencias]]
[[fr:Spectre sonore]]
[[gl:Espectro de frecuencia]]
[[ja:周波数スペクトル]]
[[lt:Dažnių spektras]]
[[nl:Frequentiespectrum]]
[[pl:Widmo częstotliwościowe]]
[[pt:Espectro sonoro]]
[[sv:Frekvensspektrum]]
[[th:สเปคตรัมความถี่]]
[[zh:频谱]]

Версия от 02:12, 13 марта 2013

Спектр сигнала — в радиотехнике это результат разложения сигнала на более простые в базисе ортогональных функций. В качестве разложения обычно используются преобразование Фурье, разложение по функциям Уолша, вейвлет-преобразование и др.

Базисные функции

В радиотехнике в качестве базисных функций используют синусоидальные функции. Это объясняется рядом причин:

  • функции , являются простыми и определены при всех значениях t, являются ортогональными и составляют полный набор при кратном уменьшении периода;
  • гармоническое колебание является единственной функцией времени, сохраняющей свою форму при прохождении колебания через линейную систему с постоянными параметрами, могут только изменяться амплитуда и фаза;
  • для гармонических функций имеется математический аппарат комплексного анализа;
  • гармоническое колебание легко реализуемо на практике.

Кроме гармонического ряда Фурье применяются и другие виды разложений: по функциям Уолша, Бесселя, Хаара, Лежандра, полиномам Чебышева и др.

В цифровой обработке сигналов для анализа применяются дискретные преобразования: Фурье, Хартли, вейвлетные и др.

Применение

Разложение сигнала в спектр применяется в анализе прохождения сигналов через электрические цепи (спектральный метод). Спектр периодического сигнала является дискретным и представляет набор гармонических колебаний, в сумме составляющий исходный сигнал. Одним из преимуществ разложения сигнала в спектр является следующее: сигнал, проходя по цепи, претерпевает изменения (усиление, задержка, модулирование, детектирование, изменение фазы, ограничение и т. д.). Токи и напряжения в цепи под действием сигнала описываются дифференциальными уравнениями, соответствующими элементам цепи и способу их соединения. Линейные цепи описываются линейными дифференциальными уравнениями, причём для линейных цепей верен принцип суперпозиции: действие на систему сложного сигнала, который состоит из суммы простых сигналов, равно сумме действий от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на какой-либо простой сигнал, например, на синусоидальное колебание с определённой частотой, определить реакцию системы на любой сложный сигнал, разложив его в ряд по синусоидальным колебаниям.

На практике спектр измеряют при помощи специальных приборов: анализаторов спектра.

Математическое представление

Если под сигналом понимать электрическое напряжение на резисторе сопротивлением 1 Ом, то спектр этого сигнала можно записать следующим образом:

, где — угловая частота равная .

Спектр сигнала является комплексной величиной и представляется в виде: , где амплитудно-частотная характеристика сигнала, фазо-частотная характеристика сигнала.

Энергия сигнала, выделяемая на резисторе, будет равна , средняя мощность.

См. также

Литература

  • Гоноровский И. С. Радиотехнические цепи и сигналы. Учебник для вузов. — М.: «Сов. радио», 1977. — 608 с. : Учебник для вузов, .
  • Баскаков С. И. Радиотехнические цепи и сигналы. — Высшая школа, 2003. — 442 с. — 12 000 экз. экз. — ISBN 5-06-003843-2. , 1987.
  • Рабинер, Голд. Теория и практика цифровой обработки сигналов.