Теорема Стокса: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 22: Строка 22:
: <math>d\omega=\left(\dfrac{\partial L}{\partial x}\,dx+\dfrac{\partial L}{\partial y}\,dy\right)\wedge dx+\left(\dfrac{\partial M}{\partial x}\,dx+\dfrac{\partial M}{\partial y}\,dy\right)\wedge dy.</math>
: <math>d\omega=\left(\dfrac{\partial L}{\partial x}\,dx+\dfrac{\partial L}{\partial y}\,dy\right)\wedge dx+\left(\dfrac{\partial M}{\partial x}\,dx+\dfrac{\partial M}{\partial y}\,dy\right)\wedge dy.</math>
Принимая во внимание, что <math>dx\wedge dx=0</math> и <math>dy\wedge dy=0</math>:
Принимая во внимание, что <math>dx\wedge dx=0</math> и <math>dy\wedge dy=0</math>:
: <math>d\omega=\underset{-\frac{\partial P}{\partial y}\,dx\,\wedge\,dy}{\underbrace{\dfrac{\partial P}{\partial y}\,dy\wedge dx}}+\dfrac{\partial Q}{\partial x}\,dx\wedge dy=\left(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}\right)\,dx\wedge dy.</math>
: <math>d\omega=\underset{-\frac{\partial P}{\partial y}\,dx\,\wedge\,dy}{\underbrace{\dfrac{\partial L}{\partial y}\,dy\wedge dx}}+\dfrac{\partial M}{\partial x}\,dx\wedge dy=\left(\dfrac{\partial M}{\partial x}-\dfrac{\partial L}{\partial y}\right)\,dx\wedge dy.</math>
Отсюда используя [[теорема Стокса|теорему Стокса]]:
Отсюда используя [[теорема Стокса|теорему Стокса]]:
: <math>\int\limits_{\partial D}L\,dx+M\,dy=\iint\limits_D\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right)\,dx\,dy.</math>
: <math>\int\limits_{\partial D}L\,dx+M\,dy=\iint\limits_D\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right)\,dx\,dy.</math>

Версия от 13:07, 7 сентября 2013

Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.

Общая формулировка

Пусть на ориентируемом многообразии размерности заданы ориентируемое -мерное подмногообразие и дифференциальная форма степени класса (). Тогда, если граница подмногообразия положительно ориентирована, то

где обозначает внешний дифференциал формы .

Теорема распространяется на линейные комбинации подмногообразий одной размерности, так называемые цепи. В этом случае формула Стокса реализует двойственность между когомологией де Рама и гомологией циклов многообразия .

Частные случаи

Пусть дана кривая , соединяющая две точки и (одномерная цепь) в многообразии произвольной размерности. Форма нулевой степени класса  — это дифференцируемая функция . Формула Стокса тогда записывается в виде

Пусть  — плоскость, а  — некоторая её ограниченная область с кусочно-гладкой жордановой границей. Форма первой степени, записанная в координатах и  — это выражение , и для интеграла этой формы по границе области верно

Независимое доказательство формулы Грина приведено в её основной статье.

Формула Кельвина — Стокса

Пусть  — кусочно-гладкая поверхность () в трёхмерном евклидовом пространстве (),  — дифференцируемое векторное поле. Тогда циркуляция векторного поля вдоль замкнутого контура равна потоку ротора (вихря) поля через поверхность , ограниченную контуром:

или в координатной записи:

Пусть теперь  — кусочно-гладкая гиперповерхность (), ограничивающая некоторую область в -мерном пространстве. Тогда интеграл дивергенции поля по области равен потоку поля через границу области :

В трёхмерном пространстве с координатами это эквивалентно записи:

или

Литература

См. также

Шаблон:Link FA