Теорема Стокса: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Строка 22: | Строка 22: | ||
: <math>d\omega=\left(\dfrac{\partial L}{\partial x}\,dx+\dfrac{\partial L}{\partial y}\,dy\right)\wedge dx+\left(\dfrac{\partial M}{\partial x}\,dx+\dfrac{\partial M}{\partial y}\,dy\right)\wedge dy.</math> |
: <math>d\omega=\left(\dfrac{\partial L}{\partial x}\,dx+\dfrac{\partial L}{\partial y}\,dy\right)\wedge dx+\left(\dfrac{\partial M}{\partial x}\,dx+\dfrac{\partial M}{\partial y}\,dy\right)\wedge dy.</math> |
||
Принимая во внимание, что <math>dx\wedge dx=0</math> и <math>dy\wedge dy=0</math>: |
Принимая во внимание, что <math>dx\wedge dx=0</math> и <math>dy\wedge dy=0</math>: |
||
: <math>d\omega=\underset{-\frac{\partial P}{\partial y}\,dx\,\wedge\,dy}{\underbrace{\dfrac{\partial |
: <math>d\omega=\underset{-\frac{\partial P}{\partial y}\,dx\,\wedge\,dy}{\underbrace{\dfrac{\partial L}{\partial y}\,dy\wedge dx}}+\dfrac{\partial M}{\partial x}\,dx\wedge dy=\left(\dfrac{\partial M}{\partial x}-\dfrac{\partial L}{\partial y}\right)\,dx\wedge dy.</math> |
||
Отсюда используя [[теорема Стокса|теорему Стокса]]: |
Отсюда используя [[теорема Стокса|теорему Стокса]]: |
||
: <math>\int\limits_{\partial D}L\,dx+M\,dy=\iint\limits_D\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right)\,dx\,dy.</math> |
: <math>\int\limits_{\partial D}L\,dx+M\,dy=\iint\limits_D\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right)\,dx\,dy.</math> |
Версия от 13:07, 7 сентября 2013
Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.
Общая формулировка
Пусть на ориентируемом многообразии размерности заданы ориентируемое -мерное подмногообразие и дифференциальная форма степени класса (). Тогда, если граница подмногообразия положительно ориентирована, то
где обозначает внешний дифференциал формы .
Теорема распространяется на линейные комбинации подмногообразий одной размерности, так называемые цепи. В этом случае формула Стокса реализует двойственность между когомологией де Рама и гомологией циклов многообразия .
Частные случаи
Пусть дана кривая , соединяющая две точки и (одномерная цепь) в многообразии произвольной размерности. Форма нулевой степени класса — это дифференцируемая функция . Формула Стокса тогда записывается в виде
Пусть — плоскость, а — некоторая её ограниченная область с кусочно-гладкой жордановой границей. Форма первой степени, записанная в координатах и — это выражение , и для интеграла этой формы по границе области верно
Определяя дифференциальную форму , найдём её внешний дифференциал:
Принимая во внимание, что и :
Отсюда используя теорему Стокса:
Независимое доказательство формулы Грина приведено в её основной статье.
Формула Кельвина — Стокса
Пусть — кусочно-гладкая поверхность () в трёхмерном евклидовом пространстве (), — дифференцируемое векторное поле. Тогда циркуляция векторного поля вдоль замкнутого контура равна потоку ротора (вихря) поля через поверхность , ограниченную контуром:
или в координатной записи:
Рассмотрим дифференциальную форму . Тогда, используя свойство дифференциала дифференциальной формы :
Отсюда, используя теорему Стокса:
Пусть . Тогда
Отсюда, используя формулу Грина, получаем
что по определению вихря и есть требуемая величина:
Пусть теперь — кусочно-гладкая гиперповерхность (), ограничивающая некоторую область в -мерном пространстве. Тогда интеграл дивергенции поля по области равен потоку поля через границу области :
В трёхмерном пространстве с координатами это эквивалентно записи:
или
Рассмотрим дифференциальную форму . Тогда, используя свойство дифференциала дифференциальной формы :
Отсюда, используя теорему Стокса:
Литература
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления — Т. 3
- Арнольд В. И. Математические методы классической механики (djvu) (недоступная ссылка с 18-05-2013 [4240 дней] — история)
- Картан А. Дифференциальное исчисление. Дифференциальные формы. — М.: Мир, 1971.