Размерность пространства: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 29: Строка 29:
*[[Старшие размерности]]
*[[Старшие размерности]]


== Литература ==
== Примечания ==
== Примечания ==
{{примечания}}
{{примечания}}
== Литература ==



{{Размерность}}
{{Размерность}}

Версия от 15:56, 29 октября 2015

Проекции фигур разной размерности на плоскость

Разме́рность — количество независимых параметров, необходимых для описания состояния объекта, или количество степеней свободы системы.

Определения

Существует несколько различных подходов к определению размерности, например

В физике

Пространственные измерения

Классические физические теории описывают трёхмерные физические измерения.

Примеры

Квадрат->Куб->Тессеракт
  • Для того, чтобы описать положение окружности на плоскости, достаточно трёх параметров: двух координат центра и радиуса, то есть: пространство окружностей на плоскости — трёхмерно; пространство точек на той же поверхности — двумерно; тем не менее сама окружность — пространство точек на окружности — одномерна: любая её точка может быть описана одним параметром.
  • В рамках ходовых моделей поверхности нашей планеты для определения положения города (город при этом рассматривается не как двумерный объект, а как точка) на поверхности Земли достаточно двух параметров, а именно: географической широты и географической долготы. Соответственно: пространство в таких моделях является двумерным (сокращённо — 2D, от англ. dimension), см. геопространство.
  • В рамках ходовых моделей нашей физической реальности для определения положения некоего объекта, к примеру — самолёта (самолёт при этом рассматривается не как трёхмерный объект, а — как точка), требуется указать три координаты — дополнительно к широте и долготе нужно знать высоту, на которой он находится. Соответственно: пространство в таких моделях является трёхмерным (3D). К этим трём координатам может быть добавлена четвёртая (время) для описания не только текущего положения самолёта, но и момента времени. Если добавить в модель ориентацию (крен, тангаж, рыскание) самолёта, то добавятся ещё три координаты и соответствующее абстрактное пространство модели станет семимерным.

См. также

Примечания

  1. R. Blei Analysis in integer and fractional dimensions, — New-York: Cambridge university press, — 556 p. — 2003. — ISBN 0-511-01266-7 (netLibrary Edition), ISBN 0-521-65084-4 (hardback).

Литература