Пренебрежимое старение: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
мНет описания правки
Строка 17: Строка 17:
В этот список входят [[алеутский морской окунь]] (''[[Sebastes aleutianus]]'') — [[Максимальная продолжительность жизни|МПЖ]] 205 лет; черепаха расписная (''[[Chrysemys picta]]'') — МПЖ 61 год; пресноводная черепаха Блэндинга (''[[Emydoidea blandingii]]'') — МПЖ 77 лет; черепаха коробчатая каролинская (''[[Terrapene carolina]]'') — МПЖ 138 лет; морской ёж Красного моря (''[[Strongylocentrotus franciscanus]]'') — МПЖ 200 лет; двустворчатый моллюск исландская циприна (''[[Arctica islandica]]'') — МПЖ 400 лет.
В этот список входят [[алеутский морской окунь]] (''[[Sebastes aleutianus]]'') — [[Максимальная продолжительность жизни|МПЖ]] 205 лет; черепаха расписная (''[[Chrysemys picta]]'') — МПЖ 61 год; пресноводная черепаха Блэндинга (''[[Emydoidea blandingii]]'') — МПЖ 77 лет; черепаха коробчатая каролинская (''[[Terrapene carolina]]'') — МПЖ 138 лет; морской ёж Красного моря (''[[Strongylocentrotus franciscanus]]'') — МПЖ 200 лет; двустворчатый моллюск исландская циприна (''[[Arctica islandica]]'') — МПЖ 400 лет.


Список базы данных AnAge неполный, его необходимо пополнить [[Гидры|гидрой]] пресноводной (''Hydra'' sp.), так как потенциальное бессмертие этого кишечнополостного организма доказано Даниэлем Мартинесом<ref name="Hydra">{{публикация|статья|автор=Martinez D. E.|год=1998|заглавие=Mortality patterns suggest lack of senescence in hydra|издание=Exp. Gerontol|месяц=03|volume=33|issue=3|pages=217-225|ссылка=http://www.ucihs.uci.edu/biochem/steele/PDFs/Hydra_senescence_paper.pdf|-язык=en}}</ref> в 1998 году. Ещё в 1913 году были получены данные о способности избегать старения у асексуальной формы планарий<ref>{{публикация|статья|автор=Child C. M.|год=1913|заглавие= The asexual cycle of Planaria velata in relation to senescence and rejuvenescence|издание= The Biological Bulletin|volume= 25|issue=3|pages= 181-203}}</ref>, которые (в отличие от секуальных форм живущих не более лет) способны время от времени "омолаживаться" благодаря высокой концентрации в их организме стволовых клеток, называемых необластами<ref>{{публикация|статья|авто=Haranghy L., Balázs, A.|год=1964|заглавие= Ageing and rejuvenation in planarians|издание= Experimental gerontology|volume= 1|issue=1|pages= 77-91}}</ref><ref>{{публикация|статья|автор=Rink J. C.|год= 2013|ссылка=http://link.springer.com/article/10.1007%2Fs00427-012-0426-4|заглавие= Stem cell systems and regeneration in planaria|издание= Development genes and evolution|volume= 223|issue=1-2|pages= 67-84}}</ref><ref>{{публикация|статья|автор=Roberts-Galbraith R. H., Newmark P. A.|год=2015|заглавие= On the organ trail: insights into organ regeneration in the planarian|издание= Current opinion in genetics & development|volume= 32|pages= 37-46|doi=10.1016/j.gde.2015.01.009}}</ref>. Для омоложения они должны иногда голодать, без этого продолжительность индивидуальной особи не превышает 15 лет<ref>{{публикация|статья|ответственный=Thomas C. J. Tan, Ruman Rahman, Farah Jaber-Hijazi, Daniel A. Felix, Chen Chen, Edward J. Louis, and Aziz Aboobaker|год=2012|заглавие= Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms|издание= PNAS|volume= 109|issue=9|pages= 4209–4214|doi=10.1073/pnas.1118885109}}</ref>.
Список базы данных AnAge неполный, его необходимо пополнить [[Гидры|гидрой]] пресноводной (''Hydra'' sp.), так как потенциальное бессмертие этого кишечнополостного организма доказано Даниэлем Мартинесом<ref name="Hydra">{{публикация|статья|автор=Martinez D. E.|год=1998|заглавие=Mortality patterns suggest lack of senescence in hydra|издание=Exp. Gerontol|месяц=03|volume=33|issue=3|pages=217-225|ссылка=http://www.ucihs.uci.edu/biochem/steele/PDFs/Hydra_senescence_paper.pdf|-язык=en}}</ref> в 1998 году. Ещё в 1913 году были получены данные о способности избегать старения у асексуальной формы планарий<ref>{{публикация|статья|автор=Child C. M.|год=1913|заглавие= The asexual cycle of Planaria velata in relation to senescence and rejuvenescence|издание= The Biological Bulletin|volume= 25|issue=3|pages= 181-203}}</ref>, которые (в отличие от секуальных форм, живущих не более трёх лет) способны время от времени «омолаживаться» благодаря высокой концентрации в их организме стволовых клеток, называемых необластами<ref>{{публикация|статья|авто=Haranghy L., Balázs, A.|год=1964|заглавие= Ageing and rejuvenation in planarians|издание= Experimental gerontology|volume= 1|issue=1|pages= 77-91}}</ref><ref>{{публикация|статья|автор=Rink J. C.|год= 2013|ссылка=http://link.springer.com/article/10.1007%2Fs00427-012-0426-4|заглавие= Stem cell systems and regeneration in planaria|издание= Development genes and evolution|volume= 223|issue=1-2|pages= 67-84}}</ref><ref>{{публикация|статья|автор=Roberts-Galbraith R. H., Newmark P. A.|год=2015|заглавие= On the organ trail: insights into organ regeneration in the planarian|издание= Current opinion in genetics & development|volume= 32|pages= 37-46|doi=10.1016/j.gde.2015.01.009}}</ref>. Для омоложения они должны иногда голодать, без этого продолжительность индивидуальной особи не превышает 15 лет<ref>{{публикация|статья|ответственный=Thomas C. J. Tan, Ruman Rahman, Farah Jaber-Hijazi, Daniel A. Felix, Chen Chen, Edward J. Louis, and Aziz Aboobaker|год=2012|заглавие= Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms|издание= PNAS|volume= 109|issue=9|pages= 4209–4214|doi=10.1073/pnas.1118885109}}</ref>.
Также потенциально бессмертна медуза ''[[Turritopsis nutricula]]''<ref name="Piraino S., Boero F., Aeschbach B., Schmid V., 1996.">{{публикация|статья|заглавие=Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa)|автор=Piraino S., Boero F., Aeschbach B., Schmid V.|тип=journal|издание=Biol. Bull|volume=190|pages=302-312|год=1996}}</ref>. Гидрозои — модульные организмы на стадии полипа, но медузоидная стадия унитарна. Большинство медуз после репродуктивного цикла умирает, но ''Turritopsis nutricula'' возвращается к ювенальной стадии — модулярного полипа, избегая смерти. Подобный цикл ''Turritopsis nutricula'' может повторять бесконечно, что делает её потенциально бессмертной.
Также потенциально бессмертна медуза ''[[Turritopsis nutricula]]''<ref name="Piraino S., Boero F., Aeschbach B., Schmid V., 1996.">{{публикация|статья|заглавие=Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa)|автор=Piraino S., Boero F., Aeschbach B., Schmid V.|тип=journal|издание=Biol. Bull|volume=190|pages=302-312|год=1996}}</ref>. Гидрозои — модульные организмы на стадии полипа, но медузоидная стадия унитарна. Большинство медуз после репродуктивного цикла умирает, но ''Turritopsis nutricula'' возвращается к ювенальной стадии — модулярного полипа, избегая смерти. Подобный цикл ''Turritopsis nutricula'' может повторять бесконечно, что делает её потенциально бессмертной.



Версия от 23:15, 3 марта 2016

Морской ёж Красного моря (Strongylocentrotus franciscanus) — животное, демонстрирующее пренебрежимое старение

Пренебрежимое старение — термин, который впервые ввел Калеб Финч в 1990 году[1]. Ряд авторов использует термин «незначительное старение», но этот термин, как и термин «пренебрежимое старение» являются вариантами перевода введённого Финчем английского термина «negligible senescence».

Термин пренебрежимое старение обозначает темп старения, который трудно статистически отличить от нуля в масштабах данной выборки, а также «нестарение» — нулевую корреляцию между возрастом и вероятностью смерти. Другими словами, речь идет о случаях потенциального бессмертия для видов, особи которых демонстрируют огромную максимальную продолжительность жизни (МПЖ), ввиду чего невозможно визуально наблюдать признаки их старения.

Пренебрежимое старение как феномен традиционно является одним из сильнейших научных аргументов за концентрацию усилий человечества в борьбе за радикальное продление человеческой жизни и победу над человеческим старением.[источник не указан 3262 дня]

В 2001 году К. Е. Финч и С. Н. Остед[2] предложили минимальные критерии для отнесения конкретного вида к категории «пренебрежимое старение»: отсутствие увеличения темпа смертности и заболеваемости с возрастом после полового созревания, снижения темпа размножения и ряд физиологических показателей. Такие существа должны стареть так медленно, что зафиксировать какие-либо возрастные изменения было бы практически невозможно. После выявления многих видов животных, обладающих пренебрежимым старением, некоторые учёные на основании статистических данных (первые из которых появились еще в 1939 году) пришли к выводу, что феномен пренебрежимого старения есть и у людей, доживших примерно до 90-100 лет, после достижения которых, их шанс дожить до каждого следующего года не уменьшается с годами[3]; кроме того, все дожившие до этих лет, имеют черты генетического сходства между собой[источник не указан 3261 день]. Следовательно, задача для современных разработчиков геропротекторов может быть сформулирована как «достижение наступления стадии пренебрежимого старения у человека в трудоспособном возрасте».

Список видов животных, демонстрирующих пренебрежимое старение

Гидра (Hydra vulgaris) — потенциально бессмертное животное

Список видов, для которых характерно пренебрежимое старение, представлен на сайте AnAge.[4]

В этот список входят алеутский морской окунь (Sebastes aleutianus) — МПЖ 205 лет; черепаха расписная (Chrysemys picta) — МПЖ 61 год; пресноводная черепаха Блэндинга (Emydoidea blandingii) — МПЖ 77 лет; черепаха коробчатая каролинская (Terrapene carolina) — МПЖ 138 лет; морской ёж Красного моря (Strongylocentrotus franciscanus) — МПЖ 200 лет; двустворчатый моллюск исландская циприна (Arctica islandica) — МПЖ 400 лет.

Список базы данных AnAge неполный, его необходимо пополнить гидрой пресноводной (Hydra sp.), так как потенциальное бессмертие этого кишечнополостного организма доказано Даниэлем Мартинесом[5] в 1998 году. Ещё в 1913 году были получены данные о способности избегать старения у асексуальной формы планарий[6], которые (в отличие от секуальных форм, живущих не более трёх лет) способны время от времени «омолаживаться» благодаря высокой концентрации в их организме стволовых клеток, называемых необластами[7][8][9]. Для омоложения они должны иногда голодать, без этого продолжительность индивидуальной особи не превышает 15 лет[10]. Также потенциально бессмертна медуза Turritopsis nutricula[11]. Гидрозои — модульные организмы на стадии полипа, но медузоидная стадия унитарна. Большинство медуз после репродуктивного цикла умирает, но Turritopsis nutricula возвращается к ювенальной стадии — модулярного полипа, избегая смерти. Подобный цикл Turritopsis nutricula может повторять бесконечно, что делает её потенциально бессмертной.

Кроме того, ряд страниц базы данных AnAge посвящены видам губок, которые демонстрируют рекордное долголетие не только среди животных, но и среди всех живых существ. Например, рекорд долгожительства среди Metazoa демонстрирует особь антарктической губки Scolymastra joubini, возраст которой оценивают от 15 до 23 тыс. лет[12].

В литературе часто упоминаются щуки, осетры, белуга (Huso huso), коралловый лосось (Plectropomus pessuliferus), гигантский групер (Epinephelus lanceolatus), североатлантический омар (Homarus americanus) и т. д. как имеющие пренебрежимое старение.[источник не указан 3262 дня] Возможно, видов с пренебрежимым старением намного больше, чем известно современной биологической науке.

Факт пренебрежимого старения среди пресноводных двустворчатых моллюсков установил российский исследователь В. В. Зюганов: пресноводная жемчужница (Margaritifera margaritifera), обитающая в Европе и Северной Америке, имеет самую длинную жизнь среди пресноводных беспозвоночных животных — 210—250 лет и демонстрирует пренебрежимое старение[13].

Современные взгляды на природу и механизмы пренебрежимого старения

Факторы, перечисленные в списке, провоцируют старение, сокращая жизнь всем живым существам, кроме тех видов, для которых характерно пренебрежимое старение:[источник не указан 3262 дня]

  1. мутации генов,
  2. оксиданты (активные формы кислорода),
  3. укорочение теломер,
  4. метилирование ДНК,
  5. гликозилирование белков и ДНК,
  6. нестабильность генома,
  7. гормональный дисбаланс,
  8. канцерогенез,
  9. вредное влияние стрессоров.

В оценке причин, почему организмы видов, для которых характерно пренебрежимое старение, нечувствительны к таким опасным угрозам, мнения современных исследователей расходятся.

В. В. Зюганов полагает, что, как правило, виды животных с пренебрежимым старением имеют непрерывный асимптотический рост и плодовитость их обычно не уменьшается, а наоборот, увеличивается с возрастом, поскольку положительно коррелирует с размерами тела. Обобщение полевых наблюдений приводит к заключению, что животные с пренебрежимым старением не умирают от случайных причин, как считает ряд геронтологов, а погибают в конечном счете от голода или по сути от геометрических последствий своего непрерывного роста — сверхкрупных размеров — «вырастания» из своей экологической ниши — утраты необходимого проворства в добывании пищи и — в финале — от дефицита питательных веществ. Как доказательство В. В. Зюганов приводит очень интересный пример с гигантским групером (Epinephelus lanceolatus) (доживают до 100—120 лет)[14]:

«Наблюдения в Индийском океане за пищевым поведением этих исполинов длиной 2,5 метра и весом до 400 кг показали, что гигант проигрывает конкуренцию с молодыми особями в охране индивидуальных участков. Если рядом самец помоложе и попроворнее, он показывает быструю атаку на старика. Старик поджимает хвост, уплывает. В итоге проигрыш из-за конкуренции. То есть, старикам либо еды не хватает, либо накапливаются негативные эффекты от стрессов.

Старичку не хватает уже поворотливости, чтобы цапнуть молодого конкурента, У него слишком крупные размеры, чтобы пролезть в пещерку и отдохнуть. То есть он физически вырастает из своей экологической ниши. Но он не стареет. У него прекрасное зрение, видит малейшее шевеление усиков креветки из-под дальнего камня. Никакой старческой катаракты хрусталика. Он не болеет, просто неповоротливый и слишком крупный. Нестареющие животные умирают от того, что ресурсов и территории на всех не хватает».

А. В. Макрушин, один из соавторов гипотезы об эволюционном возникновении процессов старения и онкогенеза[15][16], полагает, что первичный механизм старения возник на «колониально-сидячем» этапе эволюции Metazoa. Модульный организм — донорно-акцепторная система, у которой процессы эмбриогенеза и старения происходят пожизненно и одновременно. У сидячих колониальных видов Metazoa разрушение важных органов — составная часть нормального онтогенеза и сопровождает итеропарное и семельпарное бесполое размножение[17]. Старый модуль может отмереть, отдавая ресурсы новому. Питательные вещества от одного модуля передаются другим, что детерминирует локальное старение «ненужного» модуля из-за потребности колонии менять форму по причине изменения окружения. Этот процесс сопровождает инволюция паренхимных клеток и, в конечном итоге, гибель модуля. У модульных видов особью, обладающей уникальным генотипом, является возникшая из зиготы колония. Поэтому смерть модулей не ускоряет эволюцию, так как не ведет особь к гибели, а омолаживает её. Каждый модуль, прежде чем умереть из-за старости, образует несколько дочерних модулей. Макрушин делает вывод[18] о потенциальной бессмертности особей (как первых на Земле Metazoa, так и многих ныне существующих модульных видов), обусловленной заменой старых модулей молодыми. В то же время Макрушин признает факты пренебрежимого старения у унитарных видов, отрицая при этом возможность случаев потенциального бессмертия.

В наши дни происходит интрига вокруг астроцитарной гипотезы старения млекопитающих[укр.]. Согласно её постулатам, среди филогенетических ветвей позвоночных виды с пренебрежимым старением встречаются у рыб, хвостатых амфибий, черепах и, возможно, птиц. В то же время отрицается возможность существования видов с пренебрежимым старением среди млекопитающих. Впрочем, автор А. Г. Бойко[19][20] не признает возможность существования видов с пренебрежимым старением и среди ряда беспозвоночных: Appendicularia, Nematoda, Rotifera и Insecta, ибо для них характерна элиминация стволовых клеток из тела взрослых особей по окончании эмбриогенеза[21]. В 2008 году группа Рошель Баффенштейн сообщила о пренебрежимом старении млекопитающего голого землекопа (Heterocephalus glaber)[22], но этот факт был поставлен под сомнение Калебом Финчем, как не отвечающий критериям пренебрежимого старения[23]. Не признал его и автор астроцитарной гипотезы старения млекопитающих[21]. Из российских учёных за группу Рошель Баффенштейн «болеют» академик В. П. Скулачёв и доктор биологических наук Алексей Москалёв[24].

Во многих странах мира созданы центры по исследованию феномена пренебрежимого старения[25].

Примечания

  1. Finch, 1990
  2. Finch, Austad, 2001
  3. Late-Life Mortality Deceleration, Mortality Levelling-off, Mortality Plateaus
  4. Species with Negligible Senescence // AnAge. — 2010.
  5. Martinez D. E. Mortality patterns suggest lack of senescence in hydra // Exp. Gerontol. — 1998. — Vol. 33, no. 3 (March). — P. 217-225.
  6. Child C. M. The asexual cycle of Planaria velata in relation to senescence and rejuvenescence // The Biological Bulletin. — 1913. — Vol. 25, no. 3. — P. 181-203.
  7. Ageing and rejuvenation in planarians // Experimental gerontology. — 1964. — Vol. 1, no. 1. — P. 77-91.
  8. Rink J. C. Stem cell systems and regeneration in planaria // Development genes and evolution. — 2013. — Vol. 223, no. 1-2. — P. 67-84.
  9. Roberts-Galbraith R. H., Newmark P. A. On the organ trail: insights into organ regeneration in the planarian // Current opinion in genetics & development. — 2015. — Vol. 32. — P. 37-46. — doi:10.1016/j.gde.2015.01.009.
  10. Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms / Thomas C. J. Tan, Ruman Rahman, Farah Jaber-Hijazi, Daniel A. Felix, Chen Chen, Edward J. Louis, and Aziz Aboobaker // PNAS. — 2012. — Vol. 109, no. 9. — P. 4209–4214. — doi:10.1073/pnas.1118885109.
  11. Piraino S., Boero F., Aeschbach B., Schmid V. Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa) // Biol. Bull : journal. — 1996. — Vol. 190. — P. 302-312.
  12. Gatti S. The role of sponges in high-Antarctic carbon and silicon cycling: a modelling approach // Ber. Polarforsch. Meeresforsch : journal. — 2002. — Vol. 434. — P. 1-125.
  13. Зюганов, 2004
  14. Зюганов, 2008
  15. Макрушин, 2004
  16. Макрушин, Худолей, 1991
  17. Макрушин, 2001
  18. Макрушин, 2008
  19. Boyko, 2004
  20. Бойко, 2007
  21. 1 2 Бойко, Лабас, Гордеева, 2010
  22. Buffenstein, 2008
  23. Finch, 2009
  24. Москалев, 2010
  25. Guerin, 2004

Литература

Ссылки