Интерполяция методом ближайшего соседа: различия между версиями
Перейти к навигации
Перейти к поиску
[отпатрулированная версия] | [отпатрулированная версия] |
Содержимое удалено Содержимое добавлено
оформление, иллюстрация |
м удаление неуместного ш:универсальная карточка; см. также обсуждение |
||
Строка 1: | Строка 1: | ||
{{Универсальная карточка}} |
|||
[[Файл:Piecewise_constant.svg|right|thumb|Результат интерполяции методом ближайшего соседа (синие линии) для функции одной переменной. Исходные значения функции (красные точки) заданы на регулярной сетке.]] |
[[Файл:Piecewise_constant.svg|right|thumb|Результат интерполяции методом ближайшего соседа (синие линии) для функции одной переменной. Исходные значения функции (красные точки) заданы на регулярной сетке.]] |
||
[[Файл:Coloured_Voronoi_2D.svg|right|thumb|Результат интерполяции методом ближайшего соседа для случайного набора точек (черные точки на рисунке) в двумерном случае. Каждый цветной многоугольник представляет собой область, в которой все точки имеют одну и ту же ближайшую черную точку.]] |
[[Файл:Coloured_Voronoi_2D.svg|right|thumb|Результат интерполяции методом ближайшего соседа для случайного набора точек (черные точки на рисунке) в двумерном случае. Каждый цветной многоугольник представляет собой область, в которой все точки имеют одну и ту же ближайшую черную точку.]] |
Версия от 07:55, 25 октября 2018
Интерполяция методом ближайшего соседа (ступенчатая интерполяция) — метод интерполяции, при котором в качестве промежуточного значения выбирается ближайшее известное значение функции. Интерполяция методом ближайшего соседа является самым простым методом интерполяции.
Связь с диаграммами Вороного
Для заданного множества точек в пространстве диаграммой Вороного называется разбиение пространства на области такие, что для всех точек области ближайшей к ним точкой из заданного множества является одна и та же точка. Это соответствует интерполяции методом ближайшего соседа, так как во всей области будет выбрано одно и то же значение интерполируемой функции.
См. также
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |
Это заготовка статьи о компьютерной графике. Помогите Википедии, дополнив её. |