Гипоциклоида: различия между версиями
[отпатрулированная версия] | [непроверенная версия] |
Tosha (обсуждение | вклад) |
не сходилось с экспериментом |
||
Строка 30: | Строка 30: | ||
Модуль величины <math>k</math> определяет форму гипоциклоиды. |
Модуль величины <math>k</math> определяет форму гипоциклоиды. |
||
При <math>k=2</math> гипоциклоида описывается [[Пара Туси|парой Туси]] — это [[диаметр]] неподвижной окружности, при <math>k=4</math> является [[астроида|астроидой]]. |
При <math>k=2</math> гипоциклоида описывается [[Пара Туси|парой Туси]] — это [[диаметр]] неподвижной окружности, при <math>k=4</math> является [[астроида|астроидой]]. |
||
Если модуль <math>k</math> — [[рациональное число|несократимая дробь]] вида <math>\frac{m}{n}</math> (<math>m,n \in \mathbb{N}</math>), то <math>m</math> — это количество [[касп]]ов данной гипоциклоиды, а <math>n</math> — количество полных вращений катящейся окружности. Если модуль <math>k</math> [[иррациональное число]], то кривая является незамкнутой и имеет бесконечное множество несовпадающих каспов. |
Если модуль <math>k</math> — [[рациональное число|несократимая дробь]] вида <math>\frac{m}{n}</math> (<math>m,n \in \mathbb{N}</math>), то <math>m</math> — это количество [[касп]]ов данной гипоциклоиды, а <math>(m-n)</math> — количество полных вращений катящейся окружности. Если модуль <math>k</math> [[иррациональное число]], то кривая является незамкнутой и имеет бесконечное множество несовпадающих каспов. |
||
== Примеры гипоциклоид == |
== Примеры гипоциклоид == |
Версия от 15:02, 16 февраля 2020
Гипоцикло́ида (от греческих слов ὑπό — под, внизу и κύκλος — круг, окружность) — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения.
Уравнения
где , где — радиус неподвижной окружности, — радиус катящейся окружности.
Вывод уравнений Пусть в начальный момент окружности касаются в точке , лежащей на оси , где точка — центр большой окружности. Координаты точки при этом - , где . Рассмотрим, как меняются координаты точки , привязанной к катящейся окружности ( переходит в ). Пусть маленькая окружность прокатилась так, что её центр перешел из точки в точку и повернулся относительно точки на угол . Во-первых, можно показать, что поворот маленькой окружности относительно своего центра при этом (т.е. угол между и ) равен . Во-вторых, координаты точки будут такими: . Тогда, зная, куда перейдет центр катящейся окружности, и на какой угол она повернулась относительно этого центра, можно записать координаты точки : |
Модуль величины определяет форму гипоциклоиды. При гипоциклоида описывается парой Туси — это диаметр неподвижной окружности, при является астроидой. Если модуль — несократимая дробь вида (), то — это количество каспов данной гипоциклоиды, а — количество полных вращений катящейся окружности. Если модуль иррациональное число, то кривая является незамкнутой и имеет бесконечное множество несовпадающих каспов.
Примеры гипоциклоид
|
См. также
Примечания
Литература
- Гипоциклоида // Казахстан. Национальная энциклопедия . — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2. (CC BY-SA 3.0)
При написании этой статьи использовался материал из издания «Казахстан. Национальная энциклопедия» (1998—2007), предоставленного редакцией «Қазақ энциклопедиясы» по лицензии Creative Commons BY-SA 3.0 Unported.