Унитарное пространство: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 20: Строка 20:
* Над действительным пространством условие полуторалинейности эквивалентно билинейности, а эрмитовость — симметричности, и скалярное произведение становится положительно определенной билинейной симметричной функцией <math>\langle \cdot, \cdot \rangle : \mathbb L \times \mathbb L \to \R </math>.
* Над действительным пространством условие полуторалинейности эквивалентно билинейности, а эрмитовость — симметричности, и скалярное произведение становится положительно определенной билинейной симметричной функцией <math>\langle \cdot, \cdot \rangle : \mathbb L \times \mathbb L \to \R </math>.
* Полуторалинейная форма <math> \langle \cdot, \cdot \rangle</math> является эрмитовой тогда и только тогда<ref name=autogenerated1 />, когда функция <math>f(x)= \langle x,x \rangle</math> принимает только вещественные значения для всех векторов <math>x \in \mathbb L.</math>
* Полуторалинейная форма <math> \langle \cdot, \cdot \rangle</math> является эрмитовой тогда и только тогда<ref name=autogenerated1 />, когда функция <math>f(x)= \langle x,x \rangle</math> принимает только вещественные значения для всех векторов <math>x \in \mathbb L.</math>

== Cм. также ==
* [[Эрмитов оператор]]


== Примечания ==
== Примечания ==

Версия от 22:42, 26 июля 2019

Унитарное пространство — векторное пространство над полем комплексных чисел с эрмитовым скалярным произведением. Эрмитовым скалярным произведением в векторном пространстве над полем комплексных чисел называется полуторалинейная форма удовлетворяющая дополнительному условию[1]:

Определение

Другими словами, это означает, что функция удовлетворяющая следующим условиям[1]:

  • 1) (линейность скалярного произведения по первому аргументу)
и справедливы равенства:

(иногда в определении вместо этого берут линейность по второму аргументу, что не принципиально)

  • 2) (эрмитовость скалярного произведения)
справедливо равенство ,
  • 3) (положительная определенность скалярного произведения)
имеем и причем только при .

Свойства

  • Над действительным пространством условие полуторалинейности эквивалентно билинейности, а эрмитовость — симметричности, и скалярное произведение становится положительно определенной билинейной симметричной функцией .
  • Полуторалинейная форма является эрмитовой тогда и только тогда[1], когда функция принимает только вещественные значения для всех векторов

Cм. также

Примечания

  1. 1 2 3 Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия. — гл. VI, § 6.3. — М.: Физматлит, 2009.