Теорема Стокса: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
м откат правок 5.18.99.45 (обс.) к версии InternetArchiveBot
Метка: откат
категоризация
Строка 100: Строка 100:
[[Категория:Дифференциальная геометрия и топология]]
[[Категория:Дифференциальная геометрия и топология]]
[[Категория:Теории двойственности]]
[[Категория:Теории двойственности]]
[[Категория:Именные законы и правила]]
[[Категория:Именные законы и правила|Стокса]]

Версия от 08:44, 12 ноября 2019

Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.

Общая формулировка

Пусть на ориентируемом многообразии размерности заданы ориентируемое -мерное подмногообразие и дифференциальная форма степени класса (). Тогда, если граница подмногообразия положительно ориентирована, то

где обозначает внешний дифференциал формы .

Теорема распространяется на линейные комбинации подмногообразий одной размерности, так называемые цепи. В этом случае формула Стокса реализует двойственность между когомологией де Рама и гомологией циклов многообразия .

Частные случаи

Пусть дана кривая , соединяющая две точки и (одномерная цепь) в многообразии произвольной размерности. Форма нулевой степени класса  — это дифференцируемая функция . Формула Стокса тогда записывается в виде

Пусть  — плоскость, а  — некоторая её ограниченная область с кусочно-гладкой жордановой границей. Форма первой степени, записанная в координатах и  — это выражение , и для интеграла этой формы по границе области верно

Независимое доказательство формулы Грина приведено в её основной статье.

Формула Кельвина — Стокса

Пусть  — кусочно-гладкая поверхность () в трёхмерном евклидовом пространстве (),  — дифференцируемое векторное поле. Тогда циркуляция векторного поля вдоль замкнутого контура равна потоку ротора (вихря) поля через поверхность , ограниченную контуром:

или в координатной записи:

Пусть теперь  — кусочно-гладкая гиперповерхность (), ограничивающая некоторую область в -мерном пространстве. Тогда интеграл дивергенции поля по области равен потоку поля через границу области :

В трёхмерном пространстве с координатами это эквивалентно записи:

или

Литература

См. также