Гипотеза Била: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Связь с abc-гипотезой: - это форма речи, а не неопределённость.
Строка 6: Строка 6:


== Связь с abc-гипотезой ==
== Связь с abc-гипотезой ==
Из [[abc-гипотеза|abc-гипотезы]] (чей статус спорен) [[Abc-гипотеза#Доказательство гипотезы Била|следует]] справедливость гипотезы Била для достаточно больших{{каких}} ''z''<ref>{{статья
Из [[abc-гипотеза|abc-гипотезы]] (чей статус спорен) [[Abc-гипотеза#Доказательство гипотезы Била|следует]] справедливость гипотезы Била для достаточно больших ''z''<ref>{{статья
|автор = R. Daniel Mauldin
|автор = R. Daniel Mauldin
|заглавие = A Generalization of Fermat’s Last Theorem: The Beal Conjecture and Prize Problem
|заглавие = A Generalization of Fermat’s Last Theorem: The Beal Conjecture and Prize Problem

Версия от 06:13, 30 ноября 2019

Гипотеза Била — гипотеза в теории чисел, обобщение великой теоремы Ферма. Предложена в 1993 году техасским миллиардером и математиком-любителем Эндрю Билом (англ. Andrew Beal), который учредил премию за её доказательство или опровержение в 100 тыс. долларов, а в 2013 году увеличил эту премию до 1 млн долларов[1].


Формулировка

Если , где и , то имеют общий простой делитель.

Связь с abc-гипотезой

Из abc-гипотезы (чей статус спорен) следует справедливость гипотезы Била для достаточно больших z[2], а из неё — доказательство Великой теоремы Ферма, поскольку гипотеза Била является обобщением великой теоремы Ферма, которая уже была доказана в 1995 году Эндрю Уайлсом, за что тот получил Абелевскую премию в 2016 году.

Связь с великой теоремой Ферма

При условии справедливости гипотезы теорему Ферма можно доказать от противного:

Пусть существуют натуральные числа и , , такие, что . Тогда гипотеза Била для влечёт существование простого числа , делящего каждое из чисел , и . Но тогда , а следовательно, из любой тройки чисел, удовлетворяющей равенству , можно получить другую тройку чисел, удовлетворяющую данному равенству, последнее число в которой будет меньше, чем в исходной тройке. Иными словами, в множестве натуральных чисел, чья -я степень является суммой -х степеней двух других натуральных чисел, нет наименьшего элемента, что невозможно. Полученное противоречие означает, что требуемых натуральных чисел , , , не существует, то есть великая теорема Ферма доказана.

Проверка

По состоянию на 2013 год гипотеза проверена для случаев, когда значения всех шести чисел не превосходят 1000[3].

24 марта 2014 года запущен проект добровольных вычислений Beal@Home на платформе BOINC по поиску контрпримера путём полного перебора.

Примечания

  1. "Банкир из Техаса увеличил до $1 млн приз за доказательство его теоремы". РИА Новости. 2013-06-05. Дата обращения: 6 июня 2013.
  2. R. Daniel Mauldin. A Generalization of Fermat’s Last Theorem: The Beal Conjecture and Prize Problem (англ.) // Notices of the AMS. — 1985. — Vol. 44, no. 11. — P. 1436—1437.
  3. Beal’s Conjecture: A Search for Counterexamples (англ.)

Ссылки