Сферическая тригонометрия: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
устаревший шаблон
Строка 2: Строка 2:


== История ==
== История ==
Основы сферической тригонометрии были заложены греческим математиком и астрономом [[Гиппарх]]ом во II веке до н. э. Важный вклад в её развитие внесли такие античные учёные, как [[Менелай Александрийский]] и [[Клавдий Птолемей]]. Сферическая тригонометрия древних греков опиралась на применение [[теорема Менелая|теоремы Менелая]] к полному четырёхстороннику на сфере. Древнегреческие математики излагали условие теоремы Менелая не на языке отношений синусов, а на языке отношений [[хорда (геометрия)|хорд]]. Для выполнения требуемых расчётов применялись таблицы хорд, аналогичные последующим таблицам синусов.
Основы сферической тригонометрии были заложены греческим математиком и астрономом [[Гиппарх]]ом во II веке до н. э. Важный вклад в её развитие внесли такие античные учёные, как [[Менелай Александрийский]] и [[Клавдий Птолемей]]. Сферическая тригонометрия древних греков опиралась на применение [[теорема Менелая|теоремы Менелая]] к полному четырёхстороннику на сфере. Древнегреческие математики излагали условие теоремы Менелая не на языке отношений синусов, а на языке отношений [[хорда (геометрия)|хорд]]. Для выполнения требуемых расчётов применялись таблицы хорд, аналогичные последующим таблицам синусов.


Как самостоятельная дисциплина сферическая тригонометрия сформировалась в работах средневековых математиков стран ислама. Наибольший вклад в её развитие в эту эпоху внесли такие учёные, как [[Сабит ибн Корра]], [[Ибн Ирак]], [[Кушьяр ибн Лаббан]], [[Абу-л-Вафа]], [[ал-Бируни]], [[Джабир ибн Афлах]], [[ал-Джайяни]], [[ат-Туси, Насир ад-Дин|Насир ад-Дин ат-Туси]]. В их работах были введены основные тригонометрические функции, сформулирована и доказана сферическая теорема синусов и ряд других теорем, применявшихся в астрономических и геодезических расчётах, ведено понятие [[полярный треугольник|полярного треугольника]], позволявшее вычислять стороны сферического треугольника по трём его данным углам.
Как самостоятельная дисциплина сферическая тригонометрия сформировалась в работах средневековых математиков стран ислама. Наибольший вклад в её развитие в эту эпоху внесли такие учёные, как [[Сабит ибн Корра]], [[Ибн Ирак]], [[Кушьяр ибн Лаббан]], [[Абу-л-Вафа]], [[ал-Бируни]], [[Джабир ибн Афлах]], [[ал-Джайяни]], [[ат-Туси, Насир ад-Дин|Насир ад-Дин ат-Туси]]. В их работах были введены основные тригонометрические функции, сформулирована и доказана сферическая теорема синусов и ряд других теорем, применявшихся в астрономических и геодезических расчётах, ведено понятие [[полярный треугольник|полярного треугольника]], позволявшее вычислять стороны сферического треугольника по трём его данным углам.
Строка 11: Строка 11:
[[Файл:Spherical triangle illustration.svg|right|thumb|Сферический треугольник.]]
[[Файл:Spherical triangle illustration.svg|right|thumb|Сферический треугольник.]]


Обозначим стороны сферического треугольника ''a'', ''b'', ''c'', противолежащие этим сторонам углы — ''A'', ''B'', ''C''. Сторона сферического треугольника равна углу между двумя лучами исходящими из центра сферы в соответствующие концы стороны треугольника. Для радианной меры угла:
Обозначим стороны сферического треугольника ''a'', ''b'', ''c'', противолежащие этим сторонам углы — ''A'', ''B'', ''C''. Сторона сферического треугольника равна углу между двумя лучами исходящими из центра сферы в соответствующие концы стороны треугольника. Для радианной меры угла:
: <math>a=\frac{|uv|}{R}, </math> <math>b=\frac{|uw|}R, </math> <math>c=\frac{|vw|}R </math>
: <math>a=\frac{|uv|}{R}, </math> <math>b=\frac{|uw|}R, </math> <math>c=\frac{|vw|}R </math>
При использовании угла вместо длины дуги для измерения сторон сферического треугольника упрощаются формулы — в них тогда не входит радиус сферы. Так же поступают, например, в [[Сферическая астрономия|сферической астрономии]], где радиус [[небесная сфера|небесной сферы]] не имеет значения.
При использовании угла вместо длины дуги для измерения сторон сферического треугольника упрощаются формулы — в них тогда не входит радиус сферы. Так же поступают, например, в [[Сферическая астрономия|сферической астрономии]], где радиус [[небесная сфера|небесной сферы]] не имеет значения.


=== Теоремы для прямоугольного сферического треугольника ===
=== Теоремы для прямоугольного сферического треугольника ===
Пусть угол ''C'' — прямой. Тогда имеют место следующие соотношения:
Пусть угол ''C'' — прямой. Тогда имеют место следующие соотношения:


: <math>\operatorname{tg} b= \operatorname{tg} c\cos A,</math>
: <math>\operatorname{tg} b= \operatorname{tg} c\cos A,</math>
Строка 29: Строка 29:


=== Теоремы для произвольного сферического треугольника ===
=== Теоремы для произвольного сферического треугольника ===
'''[[Теоремы косинусов (сферическая геометрия)|Сферические теоремы косинусов]]'''
'''[[Теоремы косинусов (сферическая геометрия)|Сферические теоремы косинусов]]'''
: <math>\cos a= \cos b \cos c + \sin b\sin c\cos A,</math>
: <math>\cos a= \cos b \cos c + \sin b\sin c\cos A,</math>


Строка 35: Строка 35:


'''[[Теорема синусов (сферическая геометрия)|Сферическая теорема синусов]]'''
'''[[Теорема синусов (сферическая геометрия)|Сферическая теорема синусов]]'''
:<math>\frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C}, \sin^2 A>0,\sin^2B>0, \sin^2C>0.</math>
: <math>\frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C}, \sin^2 A>0,\sin^2B>0, \sin^2C>0.</math>


Первая и вторая сферические теоремы косинусов двойственны по отношению друг к другу. Сферическая теорема синусов двойственна по отношению к самой себе.
Первая и вторая сферические теоремы косинусов двойственны по отношению друг к другу. Сферическая теорема синусов двойственна по отношению к самой себе.
Строка 62: Строка 62:
* [http://mathworld.wolfram.com/SphericalTrigonometry.html Сферическая тригонометрия] на сайте [[MathWorld]]
* [http://mathworld.wolfram.com/SphericalTrigonometry.html Сферическая тригонометрия] на сайте [[MathWorld]]


{{rq|source}}
{{Сферическая тригонометрия}}
{{Сферическая тригонометрия}}



Версия от 07:55, 6 января 2020

Сферическая тригонометрия — раздел тригонометрии, в котором изучаются зависимости между величинами углов и длинами сторон сферических треугольников. Применяется для решения различных геодезических и астрономических задач.

История

Основы сферической тригонометрии были заложены греческим математиком и астрономом Гиппархом во II веке до н. э. Важный вклад в её развитие внесли такие античные учёные, как Менелай Александрийский и Клавдий Птолемей. Сферическая тригонометрия древних греков опиралась на применение теоремы Менелая к полному четырёхстороннику на сфере. Древнегреческие математики излагали условие теоремы Менелая не на языке отношений синусов, а на языке отношений хорд. Для выполнения требуемых расчётов применялись таблицы хорд, аналогичные последующим таблицам синусов.

Как самостоятельная дисциплина сферическая тригонометрия сформировалась в работах средневековых математиков стран ислама. Наибольший вклад в её развитие в эту эпоху внесли такие учёные, как Сабит ибн Корра, Ибн Ирак, Кушьяр ибн Лаббан, Абу-л-Вафа, ал-Бируни, Джабир ибн Афлах, ал-Джайяни, Насир ад-Дин ат-Туси. В их работах были введены основные тригонометрические функции, сформулирована и доказана сферическая теорема синусов и ряд других теорем, применявшихся в астрономических и геодезических расчётах, ведено понятие полярного треугольника, позволявшее вычислять стороны сферического треугольника по трём его данным углам.

История сферической тригонометрии в Европе связана с трудами таких учёных, как Региомонтан, Николай Коперник, Франческо Мавролико.

Основные соотношения

Сферический треугольник.

Обозначим стороны сферического треугольника a, b, c, противолежащие этим сторонам углы — A, B, C. Сторона сферического треугольника равна углу между двумя лучами исходящими из центра сферы в соответствующие концы стороны треугольника. Для радианной меры угла:

При использовании угла вместо длины дуги для измерения сторон сферического треугольника упрощаются формулы — в них тогда не входит радиус сферы. Так же поступают, например, в сферической астрономии, где радиус небесной сферы не имеет значения.

Теоремы для прямоугольного сферического треугольника

Пусть угол C — прямой. Тогда имеют место следующие соотношения:

Теоремы для произвольного сферического треугольника

Сферические теоремы косинусов

Сферическая теорема синусов

Первая и вторая сферические теоремы косинусов двойственны по отношению друг к другу. Сферическая теорема синусов двойственна по отношению к самой себе.

Формула пяти элементов

Указанные две формулы так же двойственны друг к другу.

Применение

Знание формул сферической тригонометрии необходимо при решении таких задач, как, например, преобразование координат из одной системы небесных координат в другую, расчёт долготы центрального меридиана планеты Солнечной системы, разметка солнечных часов и точное направление спутниковой антенны («тарелки») на нужный спутник для приёма каналов спутникового телевидения.

См. также

Литература

  • Матвиевская Г. П. Очерки истории тригонометрии. Ташкент: Фан, 1990.
  • Степанов Н. Н. Сферическая тригонометрия. М.—Л.: ОГИЗ, 1948.

Ссылки