Внутренняя метрика: различия между версиями
Перейти к навигации
Перейти к поиску
[отпатрулированная версия] | [отпатрулированная версия] |
Содержимое удалено Содержимое добавлено
отмена правки 105211064 участника 130.79.108.7 (обс.) Зачем в этой статье ссылки сразу на весь сборник трудов? Метка: отмена |
→Определения: орфография |
||
Строка 6: | Строка 6: | ||
* На пространстве <math>X</math> задан ''функционал длины'', если на множестве <math>\Gamma</math> задана функция <math>L \colon \Gamma \to \mathbb{R}_+ \cup \infty</math>, ставящая в соответствие каждому <math>\gamma \in \Gamma</math> значение <math>L(\gamma)</math> (неотрицательное число или бесконечность), которое называется ''длиной пути'' <math>\gamma</math>. |
* На пространстве <math>X</math> задан ''функционал длины'', если на множестве <math>\Gamma</math> задана функция <math>L \colon \Gamma \to \mathbb{R}_+ \cup \infty</math>, ставящая в соответствие каждому <math>\gamma \in \Gamma</math> значение <math>L(\gamma)</math> (неотрицательное число или бесконечность), которое называется ''длиной пути'' <math>\gamma</math>. |
||
* Метрика <math>\rho</math> на пространстве <math>X</math> называется ''внутренней'', если для любых двух точек <math>x,y\in X</math> расстояние между ними определяется формулой <math>\rho(x,y) = \inf \{ L(\gamma) \},</math> где инфинум берётся по |
* Метрика <math>\rho</math> на пространстве <math>X</math> называется ''внутренней'', если для любых двух точек <math>x,y\in X</math> расстояние между ними определяется формулой <math>\rho(x,y) = \inf \{ L(\gamma) \},</math> где инфинум берётся по всем допустимым путям, соединяющим точки <math>x,y\in X</math>. |
||
=== Связанные определения === |
=== Связанные определения === |
Версия от 09:26, 12 мая 2020
Внутренняя метрика — метрика в пространстве, определяемая с помощью функционала длины, как инфимум длин всех путей (кривых), соединяющих данную пару точек.
Определения
Пусть задано топологическое пространство и выбран класс некоторых допустимых путей , содержащийся во множестве всех непрерывных путей в .
- На пространстве задан функционал длины, если на множестве задана функция , ставящая в соответствие каждому значение (неотрицательное число или бесконечность), которое называется длиной пути .
- Метрика на пространстве называется внутренней, если для любых двух точек расстояние между ними определяется формулой где инфинум берётся по всем допустимым путям, соединяющим точки .
Связанные определения
- Пусть — две произвольные точки метрического пространства и — произвольное положительное число. Точка называется их -серединой, если
- Метрическое пространство называется геодезическим, если любые две точки можно соединить кратчайшей.
Свойства
- Если — пространство с внутренней метрикой, то для любых двух точек и любого существует их -середина. В случае, когда метрическое пространство полное, имеет место и обратное утверждение: если для любых двух точек и любого существует их -середина, то эта метрика внутренняя.
- Полное метрическое пространство с внутренней метрикой обладает следующим свойством: для любых двух точек и найдётся кривая длины соединяющая точки и . Кроме того, в полном метрическом пространстве с внутренней метрикой длина кратчайшей совпадает с расстоянием между её концами.
- Теорема Хопфа — Ринова: Если — локально компактное полное метрическое пространство с внутренней метрикой, то любые две точки можно соединить кратчайшей. Более того, пространство является ограниченно компактным (то есть все ограниченные замкнутые подмножества являются компактными).
См. также
Литература
- Бураго Д.Ю., Бураго Ю.Д., Иванов С.В., Курс метрической геометрии. — Москва-Ижевск, Институт компьютерных исследований, 2004. ISBN 5-93972-300-4