Равновесие Нэша: различия между версиями
[непроверенная версия] | [отпатрулированная версия] |
Lesless (обсуждение | вклад) м откат правок 77.245.163.90 (обс.) к версии 109.252.105.155 Метка: откат |
|||
Строка 16: | Строка 16: | ||
== Математическая формулировка == |
== Математическая формулировка == |
||
[[Файл:Концепции решения.png|thumb|250px|Соотношение равновесных концепций решения. Стрелками обозначено направление от рафинирований к менее требовательным концепциям]] |
[[Файл:Концепции решения.png|thumb|250px|Соотношение равновесных концепций решения. Стрелками обозначено направление от рафинирований к менее требовательным концепциям]] |
||
Допустим, <math>(S, H)</math> — [[некооперативная игра]] {{mvar|n}} лиц в нормальной форме, где {{mvar|S}} — набор чистых стратегий, а {{mvar|H}} — набор выигрышей. Когда каждый игрок <math>i \in \{1, ..., n\}</math> выбирает стратегию <math>x_i \in S</math> в профиле стратегий <math>x = (x_1, ..., x_n),</math> игрок {{mvar|i}} получает выигрыш <math>H_i(x).</math> Заметьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии <math>x_i</math> |
Допустим, <math>(S, H)</math> — [[некооперативная игра]] {{mvar|n}} лиц в нормальной форме, где {{mvar|S}} — набор чистых стратегий, а {{mvar|H}} — набор выигрышей. Когда каждый игрок <math>i \in \{1, ..., n\}</math> выбирает стратегию <math>x_i \in S</math> в профиле стратегий <math>x = (x_1, ..., x_n),</math> игрок {{mvar|i}} получает выигрыш <math>H_i(x).</math> Заметьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии <math>x_i</math>, выбранной самим игроком {{mvar|i}}, но и от чужих стратегий <math>x_{-i}</math>, то есть всех стратегий <math>x_j</math> при <math>j \ne i</math>. Профиль стратегий <math>x^* \in S</math> является равновесием по Нэшу, если изменение своей стратегии с <math>x_i^*</math> на <math>x_i</math> не выгодно ни одному игроку <math>i</math>, то есть для любого <math>i</math> |
||
: <math>H_i(x^*) \geqslant H_i(x_i, x^*_{-i}).</math> |
|||
Игра может иметь равновесие Нэша в чистых стратегиях или в [[смешанная стратегия|смешанных]] (то есть при выборе чистой стратегии [[Стохастичность|стохастически]] с фиксированной частотой). Нэш доказал, что если разрешить ''смешанные стратегии'', тогда в каждой игре {{mvar|n}} игроков будет хотя бы одно равновесие Нэша. |
|||
== Примеры использования понятия == |
== Примеры использования понятия == |
Версия от 08:13, 9 сентября 2020
Равновесие Нэша | |
---|---|
Концепция решения в теории игр | |
Связанные множества решений | |
Надмножества |
Рационализируемость Коррелированное равновесие ε-равновесие |
Подмножества |
Равновесие, совершенное по подыграм Равновесие дрожащей руки Эволюционно стабильная стратегия Сильное равновесие |
Факты | |
Авторство | Джон Нэш |
Применение | Все некооперативные игры |
Равнове́сие Нэ́ша — концепция решения, одно из ключевых понятий теории игр. Так называется набор стратегий в игре для двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив свою стратегию, если другие участники своих стратегий не меняют[1]. Джон Нэш доказал существование такого равновесия в смешанных стратегиях в любой конечной игре.
История
Эта концепция впервые использована Антуаном Огюстом Курно. Он показал, как найти то, что мы называем равновесием Нэша, в игре Курно. Нэш первым доказал, что подобные равновесия должны существовать для всех конечных игр с любым числом игроков. Это было сделано в его диссертации по некооперативным играм в 1950 году.
До Нэша это было доказано только для игр с 2 участниками с нулевой суммой Джоном фон Нейманом и Оскаром Моргенштерном (1947).
Математическая формулировка
Допустим, — некооперативная игра n лиц в нормальной форме, где S — набор чистых стратегий, а H — набор выигрышей. Когда каждый игрок выбирает стратегию в профиле стратегий игрок i получает выигрыш Заметьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии , выбранной самим игроком i, но и от чужих стратегий , то есть всех стратегий при . Профиль стратегий является равновесием по Нэшу, если изменение своей стратегии с на не выгодно ни одному игроку , то есть для любого
Игра может иметь равновесие Нэша в чистых стратегиях или в смешанных (то есть при выборе чистой стратегии стохастически с фиксированной частотой). Нэш доказал, что если разрешить смешанные стратегии, тогда в каждой игре n игроков будет хотя бы одно равновесие Нэша.
Примеры использования понятия
Социология
В социологической теории рационального выбора отдельно подчёркивается, что устойчивое состояние общества (социальное равновесие) может отличаться от оптимального (социальный оптимум). Такие неоптимальные, но устойчивые состояния и называют в социологии равновесием Нэша.
Актор B | |||
---|---|---|---|
1 | 2 | ||
Актор A | 1 | A: +1, B: +1 | A: −1, B: +2 |
2 | A: +2, B: −1 | A: 0, B: 0 |
В таблице слева приведена структура действия в терминах теории игр, составленная для двух действующих субъектов (акторов). Каждый актор имеет два варианта действия, обозначенных цифрами 1 и 2. Коэффициенты вознаграждения получаемые ими при выборе определённых вариантов действия указаны в соответствующих ячейках таблицы. Предположим, что в данный момент оба актора используют действие 2, а их вознаграждения соответственно равны нулю. Выбрав действие 1, актор A ухудшит собственную ситуацию на одну позицию (A: −1, B: +2). Аналогично актор B самостоятельно выбрав вариант 1, в то время когда актор A продолжает использовать действие 2, только ухудшит свою ситуацию (A: +2, B: −1). Таким образом, несмотря на то, что оба актора понимают, что оптимальным для них была бы ситуация, когда оба они используют действие 1 (вознаграждение — A: +1, B: +1), ни у одного из них нет мотива к изменению ситуации, а равновесие становится результатом отсутствия таких мотивов. Если система уже находится в оптимальном состоянии (когда оба актора выбрали действие 1), то у обоих из них всегда будет искушение начать использовать действие 2, которое принесёт им вознаграждение за счёт другого игрока. Этот пример иллюстрирует возможность существования двух социальных состояний: устойчивого, но неоптимального (оба актора используют вариант 2); а также второго оптимального, но неустойчивого (оба актора используют вариант 1).[2]
Политология
Для объяснения различных явлений в политической теории часто используется понятие ядра́, являющимся более слабым вариантом равновесия Нэша. Ядром называют набор состояний, в каждом из которых ни одна группа акторов, способных выстроить новое (отсутствующее в данном ядре) состояние, не улучшит своей ситуации по сравнению с их состоянием в данном ядре.[2]
Экономика
В отрасли имеются две фирмы № 1 и № 2. Каждая из фирм может установить два уровня цен: «высокие» и «низкие». Если обе фирмы выберут высокие цены, то каждая будет иметь прибыль по 3 млн. Если обе выберут низкие, то каждая получит по 2 млн. Однако, если одна выберет высокие, а другая низкие, то вторая получит 4 млн, а первая только 1 млн. Наиболее выигрышный в сумме вариант — одновременный выбор высоких цен (сумма = 6 млн). Однако это состояние (при отсутствии картельного сговора) нестабильно из-за возможности относительного выигрыша, которая открывается перед фирмой, отступившей от этой стратегии. Поэтому обе компании с наибольшей вероятностью выберут низкие цены. Хотя этот вариант и не даёт максимального суммарного выигрыша (сумма = 4 млн), он исключает относительный выигрыш конкурента, который тот мог бы получить за счёт отступления от взаимно-оптимальной стратегии. Такая ситуация и называется «равновесием по Нэшу»[3].
Военное дело
Концепция взаимного гарантированного уничтожения. Ни одна из сторон, владеющих ядерным оружием, не может ни безнаказанно начать конфликт, ни разоружиться в одностороннем порядке.
См. также
Примечания
- ↑ Univertv — Равновесие Нэша: шоппинг, репутация, голосование.
- ↑ 1 2 Джеймс С. Коулман. Экономическая социология с точки зрения теории рационального выбора // Экономическая социология : электронный журнал. — 2004. — Т. 5, № 3. — С. 35—44.
- ↑ «Nash’s Nobel prize», The Economist, 24 May 2015.
Литература
- Васин А. А., Морозов В. В. Теория игр и модели математической экономики. — М.: МГУ, 2005, 272 с.
- Воробьёв Н. Н. Теория игр для экономистов-кибернетиков. — М.: Наука, 1985
- Мазалов В. В. Математическая теория игр и приложения. — Изд-во Лань, 2010, 446 с.
- Петросян Л. А., Зенкевич Н. А., Шевкопляс Е. В. Теория игр. — СПб: БХВ-Петербург, 2012, 432 с.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |
Это заготовка статьи по экономике. Помогите Википедии, дополнив её. |