Замечательные пределы: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Первый замечательный предел: - к сожалению, обычный минус под знАком предела в браузере виден лишь при увеличении до 110%.
Строка 12: Строка 12:
'''Доказательство:'''
'''Доказательство:'''
[[Файл:Sinx x limit proof.svg|right|300px]]
[[Файл:Sinx x limit proof.svg|right|300px]]
Рассмотрим [[односторонние пределы]] <math>\lim_{x \to +0}\frac{\sin x}{x}</math> и <math>\lim_{x \to -0}\frac{\sin x}{x}</math> и докажем, что они равны 1.
Рассмотрим [[односторонние пределы]] <math>\lim_{x \to +0}\frac{\sin x}{x}</math> и <math>\lim_{x \to {\displaystyle-}0}\frac{\sin x}{x}</math><!-- К сожалению, обычный минус под знАком предела в браузере виден лишь при увеличении до 110%. --> и докажем, что они равны 1.


Пусть <math>x \in \left( 0; \frac{\pi}{2} \right)</math>. Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат, а одна сторона совпадала с осью <math>OX</math>. Пусть <math>K</math> — точка пересечения второй стороны угла с единичной окружностью, а точка <math>L</math> — с касательной к этой окружности в точке <math>A=\left( 1; 0 \right)</math>. Точка <math>H</math> — проекция точки <math>K</math> на ось <math>OX</math>.
Пусть <math>x \in \left( 0; \frac{\pi}{2} \right)</math>. Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат, а одна сторона совпадала с осью <math>OX</math>. Пусть <math>K</math> — точка пересечения второй стороны угла с единичной окружностью, а точка <math>L</math> — с касательной к этой окружности в точке <math>A=\left( 1; 0 \right)</math>. Точка <math>H</math> — проекция точки <math>K</math> на ось <math>OX</math>.

Версия от 07:15, 21 декабря 2020

Замеча́тельные преде́лы — термины, использующиеся в советских и российских учебниках по математическому анализу для обозначения двух широко известных математических тождеств со взятием предела:

  • Первый замечательный предел:
  • Второй замечательный предел:

Первый замечательный предел

Доказательство:

Рассмотрим односторонние пределы и и докажем, что они равны 1.

Пусть . Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат, а одна сторона совпадала с осью . Пусть — точка пересечения второй стороны угла с единичной окружностью, а точка — с касательной к этой окружности в точке . Точка — проекция точки на ось .

Очевидно, что:

(1)

(где — площадь сектора )

Поскольку :

Подставляя в (1), получим:

Так как при :

Умножаем на :

Перейдём к пределу:

Найдём левый односторонний предел (так как функция четна, в этом нет необходимости, достаточно доказать это для правого предела):

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.

Следствия:

Второй замечательный предел

или

Доказательство существования второго замечательного предела:

   Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где  — это целая часть x.

Отсюда следует: , поэтому
.
Если , то . Поэтому, согласно пределу , имеем:
.
По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку , тогда

.

Очевидно, из двух этих случаев вытекает, что для вещественного x.   

Следствия

  1. для ,

Применение

Замечательные пределы и их следствия используются при раскрытии неопределённостей для нахождения других пределов.

См. также

Литература

  • Ильин В. А., Позняк Э. Г. Основы математического анализа (в двух частях). — М.: Физматлит, 2005. — С. 24-25. — ISBN 5-9221-0536-1.

Ссылки