Лемма Гаусса о приводимости многочленов: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Строка 22: Строка 22:
В соответствии с выбором <math>i, j</math> элемент <math>p</math> делит все слагаемые в этой сумме, за исключением <math>a_i b_j,</math> который он не делит в силу своей простоты и факториальности <math>R.</math> Стало быть, он не делит и всю сумму, которая является одним из коэффициентов многочлена, и мы приходим к противоречию. Непосредственным следствием этого пункта является то, что если <math>f(x), g(x)</math> примитивны, то их произведение <math>f(x)g(x)</math> — тоже примитивный многочлен.
В соответствии с выбором <math>i, j</math> элемент <math>p</math> делит все слагаемые в этой сумме, за исключением <math>a_i b_j,</math> который он не делит в силу своей простоты и факториальности <math>R.</math> Стало быть, он не делит и всю сумму, которая является одним из коэффициентов многочлена, и мы приходим к противоречию. Непосредственным следствием этого пункта является то, что если <math>f(x), g(x)</math> примитивны, то их произведение <math>f(x)g(x)</math> — тоже примитивный многочлен.


Пусть теперь <math>f(x) = f_1(x)f_2(x)</math> — факторизация в кольце <math>Q[x].</math> Домножив каждый из <math>f_1(x), f_2(x)</math> на общее кратное знаменателей их коэффициентов, получим, что <math>af_1(x) = h_1(x) \in R[x]</math> и <math>bf_2(x) = h_2(x) \in R[x]</math> і <math>abf(x)= g_1(x)g_2(x).</math>
Пусть теперь <math>f(x) = f_1(x)f_2(x)</math> — факторизация в кольце <math>Q[x].</math> Домножив каждый из <math>f_1(x), f_2(x)</math> на общее кратное знаменателей их коэффициентов, получим, что <math>af_1(x) = h_1(x) \in R[x]</math> и <math>bf_2(x) = h_2(x) \in R[x]</math> и <math>abf(x)= g_1(x)g_2(x).</math>


Каждый из простых делителей <math>ab</math> делит все коэффициенты <math>g_1(x)g_2(x),</math> а значит и все коэффициенты одного из многочленов-сомножителей. Разделив на этот делитель и повторив процесс конечное число раз, получим факторизацию в кольце <math>R[x].</math>
Каждый из простых делителей <math>ab</math> делит все коэффициенты <math>g_1(x)g_2(x),</math> а значит и все коэффициенты одного из многочленов-сомножителей. Разделив на этот делитель и повторив процесс конечное число раз, получим факторизацию в кольце <math>R[x].</math>

Версия от 19:06, 5 марта 2021

Лемма Гаусса — утверждение про свойства многочленов над факториальными кольцами, которое впервые было доказано для многочленов над кольцом целых чисел. Широко применяется в теории колец и полей, в частности, при доказательстве факториальности кольца многочленов над факториальным кольцом и теоремы Люрота.

Формулировка

Пусть факториальное кольцо (например, кольцо целых чисел). Тогда справедливы следующие два утверждения:

  • Пусть неприводимо (а значит и просто) в и делит все коэффициенты произведения Тогда также делит все коэффициенты или многочлена или многочлена В частности, если примитивные многочлены (многочлен называется примитивным, если наибольший общий делитель его коэффициентов обратим, т.е. ассоциирован с единицей), то и многочлен примитивен;
  • Если поле частных кольца и если многочлен неприводим в кольце то он неприводим и в кольце Более того, если многочлен примитивен в то верно и обратное.

Оба этих утверждения остаются верными, если вместо факториальных колец рассматривать области целостности, в которых любые два элемента имеют наибольший общий делитель.

Доказательство (для факториальных колец)

Докажем, что если простой элемент кольца является общим делителем коэффициентов , то он делит либо все коэффициенты либо все коэффициенты .

Пусть , , — степени этих многочленов.

Допустим, что не делит в совокупности ни коэффициенты ни Тогда существуют наименьшие для которых и

Коэффициент при элементе степени многочлена имеет вид:

В соответствии с выбором элемент делит все слагаемые в этой сумме, за исключением который он не делит в силу своей простоты и факториальности Стало быть, он не делит и всю сумму, которая является одним из коэффициентов многочлена, и мы приходим к противоречию. Непосредственным следствием этого пункта является то, что если примитивны, то их произведение — тоже примитивный многочлен.

Пусть теперь — факторизация в кольце Домножив каждый из на общее кратное знаменателей их коэффициентов, получим, что и и

Каждый из простых делителей делит все коэффициенты а значит и все коэффициенты одного из многочленов-сомножителей. Разделив на этот делитель и повторив процесс конечное число раз, получим факторизацию в кольце

См. также

Литература

  • Garling, D.J.H. (1986), A Course in Galois Theory, Cambridge University Press, ISBN 0-521-31249-3