Коммутативность: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Нет описания правки |
Bezik (обсуждение | вклад) лучше переместить предмет статьи на свойство |
||
Строка 1: | Строка 1: | ||
[[Файл:Commutative Word Origin.PNG|right|thumb|250px|Первое известное использование термина коммутативность: фрагмент французского журнала «Annales de Gergonne», выпускавшегося с 1810 по 1832 годы, выпуск |
[[Файл:Commutative Word Origin.PNG|right|thumb|250px|Первое известное использование термина коммутативность: фрагмент французского журнала «Annales de Gergonne», выпускавшегося с 1810 по 1832 годы, выпуск 1814—15]] |
||
[[Файл:Commutative Addition.svg|right|thumb|280px|Пример, показывающий коммутативность сложения (3 + 2 = 2 + 3)]] |
[[Файл:Commutative Addition.svg|right|thumb|280px|Пример, показывающий коммутативность сложения (3 + 2 = 2 + 3)]] |
||
'''Коммутативность''' ({{lang-latelat|commutativus}} — меняющийся) — свойство [[бинарная операция|бинарной операции]] «<math>\circ</math>», заключающееся в возможности перестановки аргументов: |
|||
'''Коммутативная операция''' — [[бинарная операция]] «<math>\circ</math>», обладающая свойством ''коммутативности'' ({{lang-latelat|commutativus}} — «меняющийся»), то есть свойством ''переместительности'': |
|||
: <math>x\circ y=y\circ x</math> для любых элементов <math>x,\;y</math>. |
: <math>x\circ y=y\circ x</math> для любых элементов <math>x,\;y</math>. |
||
Строка 12: | Строка 12: | ||
Примеры: |
Примеры: |
||
* сумма и произведение действительных чисел коммутативны: |
* сумма и произведение действительных чисел коммутативны: |
||
*: <math>a+b=b+a;\quad a\cdot b=b\cdot a;\quad a,\;b\in\R |
*: <math>a+b=b+a;\quad a\cdot b=b\cdot a;\quad a,\;b\in\R</math>. |
||
* [[конъюнкция]] и [[дизъюнкция]] коммутативны: |
* [[конъюнкция]] и [[дизъюнкция]] коммутативны: |
||
*: <math>a \land b \equiv b \land a; \quad a \lor b \equiv b \lor a |
*: <math>a \land b \equiv b \land a; \quad a \lor b \equiv b \lor a</math>. |
||
* [[Объединение множеств|объединение]], [[Пересечение множеств|пересечение]] и [[симметрическая разность]] множеств коммутативны: |
* [[Объединение множеств|объединение]], [[Пересечение множеств|пересечение]] и [[симметрическая разность]] множеств коммутативны: |
||
*: <math>A \cup B = B \cup A; \quad A \cap B = B \cap A; \quad A \bigtriangleup B = B \bigtriangleup A.</math> |
*: <math>A \cup B = B \cup A; \quad A \cap B = B \cap A; \quad A \bigtriangleup B = B \bigtriangleup A.</math> |
Версия от 07:51, 12 мая 2021
Коммутативность (позднелат. commutativus — меняющийся) — свойство бинарной операции «», заключающееся в возможности перестановки аргументов:
- для любых элементов .
В частности, если групповая операция является коммутативной, то группа называется абелевой. Если операция умножения в кольце является коммутативной, то кольцо называется коммутативным.
Термин «коммутативность» ввёл в 1815 году французский математик Франсуа Жозеф Сервуа?!.
Примеры:
- сумма и произведение действительных чисел коммутативны:
- .
- конъюнкция и дизъюнкция коммутативны:
- .
- объединение, пересечение и симметрическая разность множеств коммутативны:
Многие бинарные операции ассоциативны, но в общем случае некоммутативны, таковы, например, умножение матриц:
- , но
и возведение в степень действительных чисел:
- , но .
При этом не всякая коммутативная операция ассоциативна (существуют коммутативные магмы[англ.] с неассоциативной операцией).
Существует ряд обобщений понятия коммутативности на операции более двух аргументов (различные варианты симметричности).
Коммутативные операции формируют обширный пласт алгебраических структур, обладающих многими «хорошими» свойствами, не присущими некоммутативным структурам (например, коммутативные группы в сравнении неабелевыми), во многих разделах математики применяется техника сведения задач к коммутативным структурам как к более изученным и обладающим более удобными свойствами. Коммутативная алгебра — общеалгебраическе направление, изучающее свойства коммутативных колец и связанных с ними коммутативных объектов (модулей, идеалов, дивизоров, полей).
Ссылки
- Коммутативность // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- Коммутативность — статья из Математической энциклопедии. Д. М. Смирнов