Ионистор: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Спасено источников — 1, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.8) (AbiyoyoBot - 7902
Нет описания правки
Строка 8: Строка 8:
[[Файл:Supercapacitor diagram ru.svg|thumb|right|350px|Сравнение конструктивных схем трёх конденсаторов. Слева: «обычный» [[Электрический конденсатор|конденсатор]], в середине: [[Электрический конденсатор#Классификация конденсаторов|электролитический]], справа: ионистор]]
[[Файл:Supercapacitor diagram ru.svg|thumb|right|350px|Сравнение конструктивных схем трёх конденсаторов. Слева: «обычный» [[Электрический конденсатор|конденсатор]], в середине: [[Электрический конденсатор#Классификация конденсаторов|электролитический]], справа: ионистор]]


В связи с тем, что толщина [[двойной электрический слой|двойного электрического слоя]] (то есть расстояние между «обкладками» конденсатора) крайне мала за счёт использования электролитов, а площадь пористых материалов обкладок — колоссальна, запасённая ионистором энергия выше по сравнению с обычными конденсаторами того же размера. К тому же использование двойного электрического слоя вместо обычного диэлектрика позволяет намного увеличить площадь поверхности электрода. Типичная ёмкость ионистора — несколько [[фарад]] при номинальном напряжении 2—10 вольт.
В связи с тем, что толщина [[двойной электрический слой|двойного электрического слоя]] (то есть расстояние между «обкладками» конденсатора) крайне мала за счёт использования электролитов, а площадь пористых материалов обкладок — колоссальна, запасённая ионистором энергия выше по сравнению с обычными конденсаторами того же размера. К тому же использование двойного электрического слоя вместо обычного диэлектрика позволяет намного увеличить площадь поверхности электрода. Типичная ёмкость ионистора — несколько [[фарад]] при номинальном напряжении 2—10 вольт.


== История создания ==
== История создания ==
Строка 15: Строка 15:
Столкнувшись с фактом небольшого объёма продаж, в 1971 году SOHIO передала лицензию фирме [[NEC Corporation|NEC]], которой удалось удачно продвинуть изделие на рынке под названием «Supercapacitor» (Суперконденсатор). В 1978 году фирма [[Panasonic]] выпустила на рынок «Золотой конденсатор» («Gold capacitor», «Gold Cap»), работающий на том же принципе. Эти конденсаторы имели относительно высокое [[:en:Equivalent series resistance|внутреннее сопротивление]], ограничивающее отдачу энергии, и применялись в цепях питания энергозависимой памяти ([[SRAM (память)|SRAM]]).
Столкнувшись с фактом небольшого объёма продаж, в 1971 году SOHIO передала лицензию фирме [[NEC Corporation|NEC]], которой удалось удачно продвинуть изделие на рынке под названием «Supercapacitor» (Суперконденсатор). В 1978 году фирма [[Panasonic]] выпустила на рынок «Золотой конденсатор» («Gold capacitor», «Gold Cap»), работающий на том же принципе. Эти конденсаторы имели относительно высокое [[:en:Equivalent series resistance|внутреннее сопротивление]], ограничивающее отдачу энергии, и применялись в цепях питания энергозависимой памяти ([[SRAM (память)|SRAM]]).


Ионисторы в СССР были анонсированы в журнале «Радио» № 5 в 1978 году. Это были ионисторы КИ1-1 и они имели ёмкость от 0,1 до 50 Ф в зависимости от типоразмера.
Ионисторы в СССР были анонсированы в журнале «Радио» № 5 в 1978 году. Это были ионисторы КИ1-1 и они имели ёмкость от 0,1 до 50 Ф в зависимости от типоразмера.


Первые ионисторы с малым внутренним сопротивлением для применения в мощных схемах были разработаны фирмой PRI в 1982 году. На рынке эти ионисторы появились под названием «PRI Ultracapacitor».
Первые ионисторы с малым внутренним сопротивлением для применения в мощных схемах были разработаны фирмой PRI в 1982 году. На рынке эти ионисторы появились под названием «PRI Ultracapacitor».


== Типы ионисторов ==
== Типы ионисторов ==
# Ионисторы с идеально поляризуемыми углеродными электродами («идеальный» ионистор, ионный конденсатор). Не используют электрохимических реакций, работают за счёт ионного переноса между электродами. Некоторые варианты электролита: 30%-й водный раствор [[Гидроксид калия|KOH]]; 38%-й водный раствор [[Серная кислота|Н<sub>2</sub>SO<sub>4</sub>]]; органические электролиты<ref name="ty"/>.
# Ионисторы с идеально поляризуемыми углеродными электродами («идеальный» ионистор, ионный конденсатор). Не используют электрохимических реакций, работают за счёт ионного переноса между электродами. Некоторые варианты электролита: 30%-й водный раствор [[Гидроксид калия|KOH]]; 38%-й водный раствор [[Серная кислота|Н<sub>2</sub>SO<sub>4</sub>]]; органические электролиты<ref name="ty"/>.
# Ионисторы с идеально поляризуемым углеродным электродом и неполяризуемыми или слабо поляризуемыми катодом или анодом («гибридные» ионисторы).<br>На одном электроде происходит электрохимическая реакция. Варианты: [[Серебро|Ag]](-) и твёрдый электролит {{iw|Рубидиевый йодид серебра|RbAg<sub>4</sub>I<sub>5</sub>||Rubidium silver iodide}}; 30%-й водный раствор KOH и {{iw|Оксид-гидроксид никеля|NiOOH||Nickel oxide hydroxide}}(+)<ref name="ty"/>.
# Ионисторы с идеально поляризуемым углеродным электродом и неполяризуемыми или слабо поляризуемыми катодом или анодом («гибридные» ионисторы).<br>На одном электроде происходит электрохимическая реакция. Варианты: [[Серебро|Ag]](-) и твёрдый электролит {{iw|Рубидиевый йодид серебра|RbAg<sub>4</sub>I<sub>5</sub>||Rubidium silver iodide}}; 30%-й водный раствор KOH и {{iw|Оксид-гидроксид никеля|NiOOH||Nickel oxide hydroxide}}(+)<ref name="ty"/>.
# Псевдоконденсаторы — [[Электрохимический суперконденсатор|ионисторы, использующие обратимые электрохимические процессы на поверхности электродов]]. Имеют высокую удельную ёмкость. Электрохимическая схема: (-) Ni(H) / 30%-й водный раствор KOH / NiOOH (+); (-) С(Н) / 38%-й водный раствор Н<sub>2</sub>SO<sub>4</sub> / [[Сульфат свинца(II)|PbSO<sub>4</sub>]]([[Оксид свинца(IV)|PbO<sub>2</sub>)]] (+)<ref name="ty">В. Кузнецов, О. Панькина, Н. Мачковская, Е. Шувалов, И. Востриков. [http://kit-e.ru/articles/condenser/2005_6_12.php Конденсаторы с двойным электрическим слоем (ионисторы): разработка и производство.] Компоненты и технологии № 6, 2005.</ref>.
# Псевдоконденсаторы — [[Электрохимический суперконденсатор|ионисторы, использующие обратимые электрохимические процессы на поверхности электродов]]. Имеют высокую удельную ёмкость. Электрохимическая схема: (-) Ni(H) / 30%-й водный раствор KOH / NiOOH (+); (-) С(Н) / 38%-й водный раствор Н<sub>2</sub>SO<sub>4</sub> / [[Сульфат свинца(II)|PbSO<sub>4</sub>]]([[Оксид свинца(IV)|PbO<sub>2</sub>)]] (+)<ref name="ty">В. Кузнецов, О. Панькина, Н. Мачковская, Е. Шувалов, И. Востриков. [http://kit-e.ru/articles/condenser/2005_6_12.php Конденсаторы с двойным электрическим слоем (ионисторы): разработка и производство.] Компоненты и технологии № 6, 2005.</ref>.
Строка 32: Строка 32:
* Возможность выгорания внутренних контактов при коротком замыкании для ионисторов большой ёмкости и с низким внутренним сопротивлением.
* Возможность выгорания внутренних контактов при коротком замыкании для ионисторов большой ёмкости и с низким внутренним сопротивлением.
* Низкое рабочее напряжение по сравнению с большинством конденсаторов других типов. При последовательном соединении требуется балансировка, чтобы избежать перезаряда отдельных ячеек.
* Низкое рабочее напряжение по сравнению с большинством конденсаторов других типов. При последовательном соединении требуется балансировка, чтобы избежать перезаряда отдельных ячеек.
* Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В<ref>[http://vicgain.sdot.ru/ionistor/ionist1.htm Ионисторы Справочники Любительская Радиоэлектроника<!-- Заголовок добавлен ботом -->]</ref>.
* Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В<ref>[http://vicgain.sdot.ru/ionistor/ionist1.htm Ионисторы Справочники Любительская Радиоэлектроника<!-- Заголовок добавлен ботом -->]</ref>.
* Существенно меньшая скорость отдачи заряда по сравнению с обычными конденсаторами.
* Существенно меньшая скорость отдачи заряда по сравнению с обычными конденсаторами.


Строка 65: Строка 65:


==== Тяжелый и общественный транспорт ====
==== Тяжелый и общественный транспорт ====
Электробусы с питанием от ионисторов называются [[капабус|«капабусы»]]. В настоящее время капабусы выпускаются фирмами [[Hyundai Motor]], «[[Тролза]]», «[[Белкоммунмаш]]», «ЛИАЗ», «НЕФАЗ» и др.<ref>{{Cite news|title=Электробусы|first=Фабрика|last=проектов|url=https://bkm.by/catalog/elektrobusy/|work=Белкоммунмаш|accessdate=2017-12-22|language=ru}}</ref>.
Электробусы с питанием от ионисторов называются «[[капабус]]ы». В настоящее время капабусы выпускаются фирмами [[Hyundai Motor]], «[[Тролза]]», «[[Белкоммунмаш]]», «ЛИАЗ», «НЕФАЗ» и др.<ref>{{Cite news|title=Электробусы|first=Фабрика|last=проектов|url=https://bkm.by/catalog/elektrobusy/|work=Белкоммунмаш|accessdate=2017-12-22|language=ru}}</ref>.


Капабусы Hyundai Motor представляют собой обыкновенные автобусы с электроприводом, питаемым от бортовых ионисторов. По задумке конструкторов из Hyundai Motor, такой автобус будет заряжаться на каждой второй или каждой третьей остановке, причём длительности остановки достаточно для подзарядки автобусных ионисторов. Hyundai Motor позиционирует свой капабус как экономичную замену троллейбусу (нет необходимости прокладывать контактную сеть) или дизельному (и даже водородному) автобусу (электроэнергия пока дешевле дизельного или водородного топлива).
Капабусы Hyundai Motor представляют собой обыкновенные автобусы с электроприводом, питаемым от бортовых ионисторов. По задумке конструкторов из Hyundai Motor, такой автобус будет заряжаться на каждой второй или каждой третьей остановке, причём длительности остановки достаточно для подзарядки автобусных ионисторов. Hyundai Motor позиционирует свой капабус как экономичную замену троллейбусу (нет необходимости прокладывать контактную сеть) или дизельному (и даже водородному) автобусу (электроэнергия пока дешевле дизельного или водородного топлива).
Строка 79: Строка 79:
Таким образом, троллейбусная система, используя оборудованные ионисторами троллейбусы, по гибкости приближается к обычной автобусной.
Таким образом, троллейбусная система, используя оборудованные ионисторами троллейбусы, по гибкости приближается к обычной автобусной.


С мая 2017 в Минске применяют первые белорусские электробусы [[Белкоммунмаш]] Е433 Vitovt Max Electro<ref>{{Cite news|title="За рулем чувствую себя немного "звездой". Как в Минске тестируют первые белорусские электробусы|url=https://auto.tut.by/news/exclusive/542343.html|accessdate=2017-12-22|language=ru|archivedate=2017-12-23|archiveurl=https://web.archive.org/web/20171223102251/https://auto.tut.by/news/exclusive/542343.html}}</ref>. Электробусы заряжаются на трёх зарядных станциях, расположенных в конечных точках маршрутов. Зарядка током 500 ампер длится 5—8 минут. Пустой электробус на одном заряде проезжает 20 км. Ионисторы производит ООО «Чэнду Синьджу Шелковый Путь Развитие» в китайско-белорусском промышленном парке «[[Великий Камень|Великий камень]]».
С мая 2017 в Минске применяют первые белорусские электробусы [[Белкоммунмаш]] Е433 Vitovt Max Electro<ref>{{Cite news|title="За рулем чувствую себя немного "звездой". Как в Минске тестируют первые белорусские электробусы|url=https://auto.tut.by/news/exclusive/542343.html|accessdate=2017-12-22|language=ru|archivedate=2017-12-23|archiveurl=https://web.archive.org/web/20171223102251/https://auto.tut.by/news/exclusive/542343.html}}</ref>. Электробусы заряжаются на трёх зарядных станциях, расположенных в конечных точках маршрутов. Зарядка током 500 ампер длится 5—8 минут. Пустой электробус на одном заряде проезжает 20 км. Ионисторы производит ООО «Чэнду Синьджу Шелковый Путь Развитие» в китайско-белорусском промышленном парке «[[Великий Камень|Великий камень]]».


==== Автомобильный ====
==== Автомобильный ====
Строка 85: Строка 85:


==== Автогонки ====
==== Автогонки ====

Система [[KERS]], применяющаяся в «[[Формула-1|Формуле-1]]», использует именно ионисторы.
Система [[KERS]], применяющаяся в «[[Формула-1|Формуле-1]]», использует именно ионисторы.


Строка 100: Строка 99:
Учёные из Центра нанотехнологий [[Университет Центральной Флориды|Университета Центральной Флориды]] (UCF) в 2016 году разработали гибкий ионистор, состоящий из миллионов нанометровых проволок, покрытых оболочкой из двумерных дихалькогенидов. Такой суперконденсатор выдерживает более 30 тысяч циклов зарядки<ref>[https://geektimes.ru/post/282878/ Учёные предложили метод создания гибких суперконденсаторов, способных полностью зарядить смартфон за секунды] // geektimes.ru, 22 ноября 2016.</ref>.
Учёные из Центра нанотехнологий [[Университет Центральной Флориды|Университета Центральной Флориды]] (UCF) в 2016 году разработали гибкий ионистор, состоящий из миллионов нанометровых проволок, покрытых оболочкой из двумерных дихалькогенидов. Такой суперконденсатор выдерживает более 30 тысяч циклов зарядки<ref>[https://geektimes.ru/post/282878/ Учёные предложили метод создания гибких суперконденсаторов, способных полностью зарядить смартфон за секунды] // geektimes.ru, 22 ноября 2016.</ref>.


Российские учёные из [[Сколковский институт науки и технологий|Сколковского института науки и технологий]] (Сколтех) в 2019 году разработали новый способ замещения атомов углерода на атомы азота в кристаллической решетке суперконденсаторов, который позволяет шестикратно увеличить их ёмкость, а также увеличить стабильность в циклах зарядки-разрядки. Изобретённый способ плазменной обработки углеродных наностенок структурной решётки ионисторов замещает до 3 % атомов углерода на атомы азота. Удельная ёмкость наностенки после такой обработки достигает 600 Ф/г<ref>{{Статья|автор=Nikolay V. Suetin, Iskander S. Akhatov, Elena V. Zenova, Alexander A. Pavlov, Sergei V. Vavilov|год=2019-04-30|doi=10.1038/s41598-019-43001-3|issn=2045-2322|выпуск=1|язык=en|страницы=6716|издание=Scientific Reports|заглавие=N-Doped Carbon NanoWalls for Power Sources|ссылка=https://www.nature.com/articles/s41598-019-43001-3|том=9}}</ref>. Учёные также объяснили, смоделировали и описали механизм включения атомов азота в углеродную решётку. Данное исследование открывает путь к созданию гибких тонкопленочных суперконденсаторов на основе углеродных наностенок<ref>{{Cite web|url=https://tass.ru/nauka/6463004|title=Ученые нашли способ повышения емкости источников энергии для портативной электроники|publisher=[[ТАСС]]|accessdate=2019-05-25|lang=ru}}</ref>.
Российские учёные из [[Сколковский институт науки и технологий|Сколковского института науки и технологий]] (Сколтех) в 2019 году разработали новый способ замещения атомов углерода на атомы азота в кристаллической решетке суперконденсаторов, который позволяет шестикратно увеличить их ёмкость, а также увеличить стабильность в циклах зарядки-разрядки. Изобретённый способ плазменной обработки углеродных наностенок структурной решётки ионисторов замещает до 3 % атомов углерода на атомы азота. Удельная ёмкость наностенки после такой обработки достигает 600 Ф/г<ref>{{Статья|автор=Nikolay V. Suetin, Iskander S. Akhatov, Elena V. Zenova, Alexander A. Pavlov, Sergei V. Vavilov|год=2019-04-30|doi=10.1038/s41598-019-43001-3|issn=2045-2322|выпуск=1|язык=en|страницы=6716|издание=Scientific Reports|заглавие=N-Doped Carbon NanoWalls for Power Sources|ссылка=https://www.nature.com/articles/s41598-019-43001-3|том=9}}</ref>. Учёные также объяснили, смоделировали и описали механизм включения атомов азота в углеродную решётку. Данное исследование открывает путь к созданию гибких тонкопленочных суперконденсаторов на основе углеродных наностенок<ref>{{Cite web|url=https://tass.ru/nauka/6463004|title=Ученые нашли способ повышения емкости источников энергии для портативной электроники|publisher=[[ТАСС]]|accessdate=2019-05-25|lang=ru}}</ref>.


== См. также ==
== См. также ==
{{навигация}}
* [[Конденсатор]]
* [[Конденсатор]]
* [[Туннельный эффект]]
* [[Туннельный эффект]]
Строка 108: Строка 108:
* [[Электрохимические суперконденсаторы]]
* [[Электрохимические суперконденсаторы]]
* [[Honda FCX Clarity]]
* [[Honda FCX Clarity]]

== Примечания ==
{{примечания}}


== Ссылки ==
== Ссылки ==
Строка 118: Строка 121:
* [https://web.archive.org/web/20130830075541/http://myemobile.ru/superkondensator-svoimi-rukami.html Суперконденсатор своими руками]
* [https://web.archive.org/web/20130830075541/http://myemobile.ru/superkondensator-svoimi-rukami.html Суперконденсатор своими руками]


{{ВС}}
== Примечания ==
{{примечания}}

{{переработать}}
{{переработать}}
{{перевести|en|Supercapacitor}}
{{перевести|en|Supercapacitor}}

Версия от 22:14, 21 сентября 2021

Плоский таблеточный ионистор
Варианты ионисторов
Плоский таблеточный ионистор (вариант выводов)
литий-ионные конденсаторы[нем.] (?)

Иони́стор (суперконденсатор, ультраконденсатор, двухслойный электрохимический конденсатор) — электрохимическое устройство, конденсатор с органическим или неорганическим электролитом, «обкладками» в котором служит двойной электрический слой на границе раздела электрода и электролита. По характеристикам занимает промежуточное положение между конденсатором и химическим источником тока.

Концепция

Сравнение конструктивных схем трёх конденсаторов. Слева: «обычный» конденсатор, в середине: электролитический, справа: ионистор

В связи с тем, что толщина двойного электрического слоя (то есть расстояние между «обкладками» конденсатора) крайне мала за счёт использования электролитов, а площадь пористых материалов обкладок — колоссальна, запасённая ионистором энергия выше по сравнению с обычными конденсаторами того же размера. К тому же использование двойного электрического слоя вместо обычного диэлектрика позволяет намного увеличить площадь поверхности электрода. Типичная ёмкость ионистора — несколько фарад при номинальном напряжении 2—10 вольт.

История создания

Первый конденсатор с двойным слоем на пористых угольных электродах был запатентован в 1957 году фирмой General Electric[1]. Так как точный механизм к тому моменту времени не был ясен, было предположено, что энергия запасается в порах на электродах, что и приводит к образованию «исключительно высокой способности накопления заряда». Чуть позже, в 1966, фирма Standard Oil of Ohio, Cleveland (SOHIO), USA запатентовала элемент, который сохранял энергию в двойном слое[2].

Столкнувшись с фактом небольшого объёма продаж, в 1971 году SOHIO передала лицензию фирме NEC, которой удалось удачно продвинуть изделие на рынке под названием «Supercapacitor» (Суперконденсатор). В 1978 году фирма Panasonic выпустила на рынок «Золотой конденсатор» («Gold capacitor», «Gold Cap»), работающий на том же принципе. Эти конденсаторы имели относительно высокое внутреннее сопротивление, ограничивающее отдачу энергии, и применялись в цепях питания энергозависимой памяти (SRAM).

Ионисторы в СССР были анонсированы в журнале «Радио» № 5 в 1978 году. Это были ионисторы КИ1-1 и они имели ёмкость от 0,1 до 50 Ф в зависимости от типоразмера.

Первые ионисторы с малым внутренним сопротивлением для применения в мощных схемах были разработаны фирмой PRI в 1982 году. На рынке эти ионисторы появились под названием «PRI Ultracapacitor».

Типы ионисторов

  1. Ионисторы с идеально поляризуемыми углеродными электродами («идеальный» ионистор, ионный конденсатор). Не используют электрохимических реакций, работают за счёт ионного переноса между электродами. Некоторые варианты электролита: 30%-й водный раствор KOH; 38%-й водный раствор Н2SO4; органические электролиты[3].
  2. Ионисторы с идеально поляризуемым углеродным электродом и неполяризуемыми или слабо поляризуемыми катодом или анодом («гибридные» ионисторы).
    На одном электроде происходит электрохимическая реакция. Варианты: Ag(-) и твёрдый электролит RbAg4I5[англ.]; 30%-й водный раствор KOH и NiOOH[англ.](+)[3].
  3. Псевдоконденсаторы — ионисторы, использующие обратимые электрохимические процессы на поверхности электродов. Имеют высокую удельную ёмкость. Электрохимическая схема: (-) Ni(H) / 30%-й водный раствор KOH / NiOOH (+); (-) С(Н) / 38%-й водный раствор Н2SO4 / PbSO4(PbO2) (+)[3].

Сравнения

С появлением ионисторов стало возможным использовать конденсаторы в электрических цепях не только как преобразующий элемент, но и как источник напряжения. Широко применяются в качестве замены батареек для хранения информации о параметрах изделия при отсутствии внешнего питания. Такие элементы имеют как несколько преимуществ, так и ряд недостатков над обычными химическими источниками тока — гальваническими элементами и аккумуляторами:

Недостатки

  • Высокая цена ионисторов с большими разрядными токами, препятствующая их широкому применению.
  • Напряжение напрямую зависит от степени заряженности.
  • Возможность выгорания внутренних контактов при коротком замыкании для ионисторов большой ёмкости и с низким внутренним сопротивлением.
  • Низкое рабочее напряжение по сравнению с большинством конденсаторов других типов. При последовательном соединении требуется балансировка, чтобы избежать перезаряда отдельных ячеек.
  • Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В[4].
  • Существенно меньшая скорость отдачи заряда по сравнению с обычными конденсаторами.

Преимущества

  • Большие максимальные токи зарядки и разрядки.
  • Малая деградация даже после сотен тысяч циклов заряда/разряда. Проводились исследования по определению максимального числа циклов заряд-разряд. После 100 000 циклов не наблюдалось ухудшения характеристик.
  • Высокое внутреннее сопротивление у большинства ионисторов (препятствует быстрому саморазряду, а также перегреву и разрушению).
  • Ионистор обладает длительным сроком службы (при 0,6 Uном. около 40 000 часов с незначительным снижением емкости).
  • Малый вес по сравнению с электролитическими конденсаторами подобной ёмкости.
  • Низкая токсичность материалов (кроме органических электролитов).
  • Неполярность (хотя на ионисторах и указаны «+» и «−», это делается для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе).
  • Малая зависимость от окружающей температуры: могут работать как на морозе, так и на жаре.
  • Большая механическая прочность: выносят многократные перегрузки.

Материалы

Электроды выполняют, как правило, путём использования пористых материалов, таких, как активированный уголь или вспененные металлы; и подбираются эти металлы в соответствии с типом электролита. Общая площадь поверхности такого пористого материала во много раз больше, чем у аналогичного, но с гладкой поверхностью, что позволило хранить заряд в соответствующем объёме.

Плотность энергии

Плотность энергии ионисторов пока ещё в несколько раз меньше возможностей аккумуляторов. Например, плотность энергии ионистора BCAP3000 (3000 Ф, 2,7 В) массой 0,51 кг составляет 21,4 кДж/кг (6 Вт·ч/кг). Это в 7,6 раза меньше плотности энергии свинцовых электролитических аккумуляторов, в 25 раз меньше литий-полимерных аккумуляторов, но в десятки раз больше плотности энергии электролитического конденсатора.

Плотность мощности ионистора зависит от внутреннего сопротивления. В последних моделях ионисторов внутреннее сопротивление достаточно мало, что позволяет получать мощность, сравнимую с аккумуляторной.

В 2008 году индийские исследователи разработали опытный образец ионистора на основе графеновых электродов, обладающий удельной энергоёмкостью до 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30—40 Вт·ч/кг) [5].

В 2011 году корейские ученые под руководством профессора Чой Джунг Вук (Choi Jung-wook) разработали суперконденсатор, изготовленный с применением графена и азота, обеспечивающий удвоенную ёмкость по сравнению с обычными источниками энергии того же класса. Улучшение электрических свойств элемента питания было достигнуто благодаря добавлению азота[6].

Использование

Транспортные средства

Тяжелый и общественный транспорт

Электробусы с питанием от ионисторов называются «капабусы». В настоящее время капабусы выпускаются фирмами Hyundai Motor, «Тролза», «Белкоммунмаш», «ЛИАЗ», «НЕФАЗ» и др.[7].

Капабусы Hyundai Motor представляют собой обыкновенные автобусы с электроприводом, питаемым от бортовых ионисторов. По задумке конструкторов из Hyundai Motor, такой автобус будет заряжаться на каждой второй или каждой третьей остановке, причём длительности остановки достаточно для подзарядки автобусных ионисторов. Hyundai Motor позиционирует свой капабус как экономичную замену троллейбусу (нет необходимости прокладывать контактную сеть) или дизельному (и даже водородному) автобусу (электроэнергия пока дешевле дизельного или водородного топлива).

Капабусы от «Тролзы» технически представляют собой «бесштанговые троллейбусы». То есть конструктивно это троллейбус, но без штанг питания от контактной сети и, соответственно, с питанием электропривода от ионисторов.

Но особенно перспективны ионисторы в качестве средства реализации системы автономного хода для обычных троллейбусов. Троллейбус, оборудованный ионисторами, по маневренности приближается к автобусу. В частности, такой троллейбус может:

  • проходить отдельные короткие участки маршрута, не оборудованные контактной сетью (в том числе при необходимости двигаться в объезд, когда на каком-то участке маршрута движение по штатной трассе маршрута невозможно);
  • проходить места обрыва линии контактной сети;
  • возможность объезжать препятствия даже тогда, когда длина токоприёмных штанг не позволяет это сделать (водитель оборудованного ионисторами троллейбуса в этом случае просто опустит токоприёмные штанги и объедет препятствие, после чего вновь поднимет токоприёмные штанги и продолжит движение в штатном режиме);
  • отпадает надобность в развитии контактной сети в депо и на разворотных кольцах на конечных остановках — в депо и на разворотных кольцах оборудованные ионисторами троллейбусы маневрируют с опущенными токоприёмными штангами.

Таким образом, троллейбусная система, используя оборудованные ионисторами троллейбусы, по гибкости приближается к обычной автобусной.

С мая 2017 в Минске применяют первые белорусские электробусы Белкоммунмаш Е433 Vitovt Max Electro[8]. Электробусы заряжаются на трёх зарядных станциях, расположенных в конечных точках маршрутов. Зарядка током 500 ампер длится 5—8 минут. Пустой электробус на одном заряде проезжает 20 км. Ионисторы производит ООО «Чэнду Синьджу Шелковый Путь Развитие» в китайско-белорусском промышленном парке «Великий камень».

Автомобильный

Ё-мобиль — проект автомобиля, разрабатывавшийся в Российской Федерации, использовал суперконденсатор как основное средство для накопления электрической энергии. Сами эти суперконденсаторы не выпускались серийно и разрабатывались параллельно с автомобилем.

Автогонки

Система KERS, применяющаяся в «Формуле-1», использует именно ионисторы.

Бытовая электроника

Применяются для основного и резервного питания в фотовспышках, фонарях, карманных плеерах и автоматических коммунальных счётчиках — везде, где требуется быстро зарядить устройство. Лазерный детектор рака молочной железы на ионисторах заряжается за 2,5 минуты и работает 1 минуту[9].

В магазинах автопринадлежностей продаются ионисторы ёмкостью порядка 1Ф, предназначенные для питания автомагнитол (и аппаратуры, питаемой от разъёма прикуривателя) при выключенном зажигании и во время запуска двигателя (на многих автомобилях на время работы стартера отключаются все остальные потребители), а также для сглаживания скачков напряжения при пиковых нагрузках, например для работы мощных динамиков.

Перспективы развития

Согласно заявлениям сотрудников MIT 2006 года[10], ионисторы могут в скором времени заменить обычные аккумуляторы. Кроме того, в 2009 году были проведены испытания аккумулятора на основе ионистора, в котором в пористый материал были введены наночастицы железа. Полученный двойной электрический слой пропускал электроны в два раза быстрее за счёт создания туннельного эффекта. Группа учёных из Техасского университета в Остине разработала новый материал, представляющий собой пористый объёмный углерод. Полученный таким образом углерод обладал свойствами суперконденсатора. Обработка вышеописанного материала гидроксидом калия привела к созданию в углероде большого количества крохотных пор, которые в сочетании с электролитом смогли хранить в себе колоссальный электрический заряд[11].

В настоящее время создана одна из необходимых частей конденсатора — твёрдый нанокомпозиционный электролит с проводимостью по ионам лития. Ведётся разработка электродов для конденсатора. Одна из задач — уменьшить размеры ионистора за счёт внутреннего строения[12].

Учёные из Центра нанотехнологий Университета Центральной Флориды (UCF) в 2016 году разработали гибкий ионистор, состоящий из миллионов нанометровых проволок, покрытых оболочкой из двумерных дихалькогенидов. Такой суперконденсатор выдерживает более 30 тысяч циклов зарядки[13].

Российские учёные из Сколковского института науки и технологий (Сколтех) в 2019 году разработали новый способ замещения атомов углерода на атомы азота в кристаллической решетке суперконденсаторов, который позволяет шестикратно увеличить их ёмкость, а также увеличить стабильность в циклах зарядки-разрядки. Изобретённый способ плазменной обработки углеродных наностенок структурной решётки ионисторов замещает до 3 % атомов углерода на атомы азота. Удельная ёмкость наностенки после такой обработки достигает 600 Ф/г[14]. Учёные также объяснили, смоделировали и описали механизм включения атомов азота в углеродную решётку. Данное исследование открывает путь к созданию гибких тонкопленочных суперконденсаторов на основе углеродных наностенок[15].

См. также

Примечания

  1. H. I. Becker: Low voltage electrolytic capacitor, U.S.-Patent 2800616
  2. R.A. Rightmire,, «Electrical energy storage apparatus», U.S. Patent 3288641
  3. 1 2 3 В. Кузнецов, О. Панькина, Н. Мачковская, Е. Шувалов, И. Востриков. Конденсаторы с двойным электрическим слоем (ионисторы): разработка и производство. Компоненты и технологии № 6, 2005.
  4. Ионисторы Справочники Любительская Радиоэлектроника
  5. S.R.C.Vivekchand; Chandra Sekhar Rout, K.S.Subrahmanyam, A.Govindaraj and C.N.R.Rao. Graphene-based electrochemical supercapacitors (неопр.) // J. Chem. Sci., Indian Academy of Sciences. — 2008. — Т. 120, January 2008. — С. 9−13.
  6. Корейские ученые разработали графеновый суперконденсатор для электромобилей / Новости hardware / 3DNews — Daily Digital Digest
  7. проектов, Фабрика. "Электробусы". Белкоммунмаш. Дата обращения: 22 декабря 2017.
  8. ""За рулем чувствую себя немного "звездой". Как в Минске тестируют первые белорусские электробусы". Архивировано 23 декабря 2017. Дата обращения: 22 декабря 2017.
  9. CiteSeerX — TurboCap: A Batteryless, Supercapacitor-based Power Supply for Mini-FDPM
  10. MIT разработал углеродную «мини-батарейку»
  11. Суперконденсаторы помогают усовершенствовать элементы питания :: Overclockers.ru
  12. Ученые ИХТТМ СО РАН намерены создать суперконденсатор Архивная копия от 4 сентября 2014 на Wayback Machine
  13. Учёные предложили метод создания гибких суперконденсаторов, способных полностью зарядить смартфон за секунды // geektimes.ru, 22 ноября 2016.
  14. Nikolay V. Suetin, Iskander S. Akhatov, Elena V. Zenova, Alexander A. Pavlov, Sergei V. Vavilov. N-Doped Carbon NanoWalls for Power Sources (англ.) // Scientific Reports. — 2019-04-30. — Vol. 9, iss. 1. — P. 6716. — ISSN 2045-2322. — doi:10.1038/s41598-019-43001-3.
  15. Ученые нашли способ повышения емкости источников энергии для портативной электроники. ТАСС. Дата обращения: 25 мая 2019.

Ссылки

В статье «Поедем на конденсаторе» (впервые опубликованной в журнале «Юный Техник» за декабрь 1990 года) приведен рецепт изготовления ионистора (там он назывался «ИОНИКС») своими руками для модели лодки с мотором.