Ломаная: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
откат
Метка: ручная отмена
Строка 6: Строка 6:
Ломаной (ломаной линией) <math>A_1A_2\dots A_n</math> называется фигура, которая состоит из отрезков <math>[A_1A_2]</math>, <math>[A_2A_3]</math>, …, <math>[A_{n-1}A_n]</math>.
Ломаной (ломаной линией) <math>A_1A_2\dots A_n</math> называется фигура, которая состоит из отрезков <math>[A_1A_2]</math>, <math>[A_2A_3]</math>, …, <math>[A_{n-1}A_n]</math>.


Точки <math>A_1</math>, …<math>A_{n}</math>, называются '''вершинами''' ломаной, а отрезки <math>[A_1A_2]</math>, <math>[A_2A_3]</math>, …, <math>[A_{n-1}A_n]\bar{\breve{\check{a}}}</math> — '''звеньями''' ломаной.
Точки <math>A_1</math>, …<math>A_{n}</math>, называются '''вершинами''' ломаной, а отрезки <math>[A_1A_2]</math>, <math>[A_2A_3]</math>, …, <math>[A_{n-1}A_n]</math> — '''звеньями''' ломаной.


Ломаная называется '''невырожденной''', если для любого <math>k\in\{1, 2, \dots, n-2\}</math> отрезки <math>[A_kA_{k+1}]</math> и <math>[A_{k+1}A_{k+2}]</math> не лежат на одной [[прямая|прямой]];
Ломаная называется '''невырожденной''', если для любого <math>k\in\{1, 2, \dots, n-2\}</math> отрезки <math>[A_kA_{k+1}]</math> и <math>[A_{k+1}A_{k+2}]</math> не лежат на одной [[прямая|прямой]];
Строка 12: Строка 12:


== Типы ломаных ==
== Типы ломаных ==
* Ломаная имеет '''самопересечение''', если хотя бы два её звена имеют общую точку помимо общей вершины:ооратай
* Ломаная имеет '''самопересечение''', если хотя бы два её звена имеют общую точку помимо общей вершины:
[[Файл:self_crossed_polygonal_chain.svg|300px|Ломаная с самопересечениями]]
[[Файл:self_crossed_polygonal_chain.svg|300px|Ломаная с самопересечениями]]
:Изображённую здесь ломаную следует называть «ломаная A<sub>1</sub>A<sub>2</sub>A<sub>3</sub>A<sub>4</sub>A<sub>5</sub>A<sub>6</sub>».
:Изображённую здесь ломаную следует называть «ломаная A<sub>1</sub>A<sub>2</sub>A<sub>3</sub>A<sub>4</sub>A<sub>5</sub>A<sub>6</sub>».
Строка 18: Строка 18:
[[Файл:closed_polygonal_line.svg|300px|Замкнутая ломаная]]
[[Файл:closed_polygonal_line.svg|300px|Замкнутая ломаная]]
:Замкнутую плоскую ломаную часто называют [[многоугольник]]ом: в этом случае изображённая ломаная A<sub>1</sub>A<sub>2</sub>A<sub>3</sub>A<sub>4</sub>A<sub>5</sub>A<sub>1</sub> будет называться «многоугольник» A<sub>1</sub>A<sub>2</sub>A<sub>3</sub>A<sub>4</sub>A<sub>5</sub>», а звенья будут называться ''сторонами'' многоугольника. В ряде случаев, например, при рассмотрении [[многогранник]]ов, стороны многоугольника называются ''рёбрами''.
:Замкнутую плоскую ломаную часто называют [[многоугольник]]ом: в этом случае изображённая ломаная A<sub>1</sub>A<sub>2</sub>A<sub>3</sub>A<sub>4</sub>A<sub>5</sub>A<sub>1</sub> будет называться «многоугольник» A<sub>1</sub>A<sub>2</sub>A<sub>3</sub>A<sub>4</sub>A<sub>5</sub>», а звенья будут называться ''сторонами'' многоугольника. В ряде случаев, например, при рассмотрении [[многогранник]]ов, стороны многоугольника называются ''рёбрами''.
Также ломаная может быть простой или сложной. Простая ломаная не имеет смежных точек.


== См. также ==
== См. также ==

Версия от 15:47, 29 сентября 2021

Ломаная A1A2A3A4A5A6

Ло́маная, ломаная линия — геометрическая фигура, состоящая из отрезков, последовательно соединённых своими концами.

Определение

Ломаной (ломаной линией) называется фигура, которая состоит из отрезков , , …, .

Точки , …, называются вершинами ломаной, а отрезки , , …,  — звеньями ломаной.

Ломаная называется невырожденной, если для любого отрезки и не лежат на одной прямой; в противном случае — вырожденной.

Типы ломаных

  • Ломаная имеет самопересечение, если хотя бы два её звена имеют общую точку помимо общей вершины:

Ломаная с самопересечениями

Изображённую здесь ломаную следует называть «ломаная A1A2A3A4A5A6».
  • Ломаная называется замкнутой, если первая и последняя точки ломаной совпадают; в этом случае дополнительно требуют, чтобы отрезки и также не лежали на одной прямой:

Замкнутая ломаная

Замкнутую плоскую ломаную часто называют многоугольником: в этом случае изображённая ломаная A1A2A3A4A5A1 будет называться «многоугольник» A1A2A3A4A5», а звенья будут называться сторонами многоугольника. В ряде случаев, например, при рассмотрении многогранников, стороны многоугольника называются рёбрами.

См. также