Теорема Стокса: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Частичная отмена предыдущей правки: дифференциальная форма не функция. Сформулировать точнее не могу, но точно не так, как было?..
Строка 2: Строка 2:


== Общая формулировка ==
== Общая формулировка ==
Пусть на [[Ориентация#Многообразия|ориентируемом многообразии]] <math>M</math> [[размерность пространства|размерности]] <math>n</math> заданы положительно ориентированное [[Ограниченность|ограниченное]] <math>p</math>-мерное [[подмногообразие]] <math>\sigma</math> (<math>1\leqslant p\leqslant n</math>) и [[дифференциальная форма]] <math>\omega</math> степени <math>p-1</math> из [[Пространство дифференцируемых функций|пространства функций, первая производная которых определена]], то есть из <math>C^1</math>. Тогда если [[Граница (топология)|граница]] подмногообразия <math>\partial\sigma</math> положительно ориентирована, то
Пусть на [[Ориентация#Многообразия|ориентируемом многообразии]] <math>M</math> [[размерность пространства|размерности]] <math>n</math> заданы положительно ориентированное [[Ограниченность|ограниченное]] <math>p</math>-мерное [[подмногообразие]] <math>\sigma</math> (<math>1\leqslant p\leqslant n</math>) и [[дифференциальная форма]] <math>\omega</math> степени <math>p-1</math> класса <math>C^1</math>. Тогда если [[Граница (топология)|граница]] подмногообразия <math>\partial\sigma</math> положительно ориентирована, то
: <math>\int\limits_\sigma d\omega=\int\limits_{\partial\sigma}\omega,</math>
: <math>\int\limits_\sigma d\omega=\int\limits_{\partial\sigma}\omega,</math>
где <math>d\omega</math> обозначает внешний дифференциал [[Дифференциальная форма|формы]] <math>\omega</math>.
где <math>d\omega</math> обозначает внешний дифференциал [[Дифференциальная форма|формы]] <math>\omega</math>.

Версия от 10:04, 24 ноября 2021

Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.

Общая формулировка

Пусть на ориентируемом многообразии размерности заданы положительно ориентированное ограниченное -мерное подмногообразие () и дифференциальная форма степени класса . Тогда если граница подмногообразия положительно ориентирована, то

где обозначает внешний дифференциал формы .

Теорема распространяется на линейные комбинации подмногообразий одной размерности — так называемые цепи. В этом случае формула Стокса реализует двойственность между когомологиями де Рама и гомологиями циклов многообразия .

Частные случаи

Пусть дана кривая (одномерная цепь), ориентированно направленная от точки к точке , в многообразии произвольной размерности. Форма нулевой степени класса  — это дифференцируемая функция . Тогда формула Стокса записывается в виде

Иногда называют теоремой Грина — Римана. Пусть  — плоскость, а  — некоторая её положительно ориентированная ограниченная область с кусочно-гладкой жордановой границей. Пусть форма первой степени, записанная в координатах и  — это выражение Тогда для интеграла от этой формы по положительно ориентированной (против часовой стрелки) границе области верно

Независимое доказательство формулы Грина приведено в её основной статье.

Формула Кельвина — Стокса

Часто называется просто формулой Стокса. Пусть  — кусочно-гладкая поверхность () в трёхмерном евклидовом пространстве (),  — дифференцируемое векторное поле. Тогда циркуляция векторного поля вдоль замкнутого контура равна потоку ротора (вихря) поля через поверхность , ограниченную контуром:

или в координатной записи:

Часто в правой части пишут интеграл по замкнутому контуру.

Пусть теперь  — кусочно-гладкая гиперповерхность (), ограничивающая некоторую область в -мерном пространстве. Тогда интеграл дивергенции поля по области равен потоку поля через границу области :

В трёхмерном пространстве с координатами это эквивалентно записи:

или

Литература

См. также