Формула Остроградского — Гаусса: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Нет описания правки Метки: с мобильного устройства из мобильной версии |
Нет описания правки Метки: с мобильного устройства из мобильной версии |
||
Строка 1: | Строка 1: | ||
{{другие значения|Список объектов, названных в честь |
{{другие значения|Список объектов, названных в честь Гаусса}} |
||
'''Фо́рмула |
'''Фо́рмула Гаусса —Остроградского ''' связывает [[поток векторного поля|поток непрерывно-дифференцируемого векторного поля]] через замкнутую [[поверхность]] и [[интеграл]] от [[дивергенция|дивергенции]] этого поля по [[объём]]у, ограниченному этой поверхностью. |
||
Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот. |
Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот. |
Версия от 20:15, 11 января 2022
Фо́рмула Гаусса —Остроградского связывает поток непрерывно-дифференцируемого векторного поля через замкнутую поверхность и интеграл от дивергенции этого поля по объёму, ограниченному этой поверхностью.
Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.
Формулировка
Пусть тело ограничено замкнутой поверхностью . Тогда для любого векторного поля выполняется равенство
то есть интеграл от дивергенции векторного поля , распространённый по объёму , равен потоку вектора через поверхность .
Замечания
В работе Остроградского формула записана в следующем виде:
где и — дифференциалы объёма и поверхности соответственно. — функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью[1].
Современная запись формулы:
где , и . В современной записи — элемент объёма, — элемент поверхности[1].
Обобщением формулы Остроградского является формула Стокса для многообразий с краем.
История
Впервые теорема была установлена Лагранжем в 1762[2].
Общий метод преобразования тройного интеграла к поверхностному впервые показал Карл Фридрих Гаусс (1813, 1830) на примере задач электродинамики[3].
В 1826 году М. В. Остроградский вывел формулу в общем виде, представив её в виде теоремы (опубликовано в 1831 году). Многомерное обобщение формулы М. В. Остроградский опубликовал в 1834 году[3]. С помощью данной формулы Остроградский нашёл выражение производной по параметру от -кратного интеграла с переменными пределами и получил формулу для вариации -кратного интеграла.
За рубежом формула как правило называется «теоремой о дивергенции» (англ. divergence theorem), иногда — формулой Гаусса или «формулой (теоремой) Гаусса—Остроградского».
См. также
Примечания
- ↑ 1 2 Ильин В. А. и др. Математический анализ. Продолжение курса / В. А. Ильин, В. А. Садовничий, Бл. X. Сендов. Под ред. А. Н. Тихонова. — М.: Изд-во МГУ, 1987.— 358 с.
- ↑ В работе по теории звука в 1762 г. Лагранж рассматривает частный случай теоремы: Lagrange (1762) «Nouvelles recherches sur la nature et la propagation du son» (Новые исследования о природе и распространении звука), Miscellanea Taurinensia (Mélanges de Turin), 2: 11 — 172. Репринтное издание: «Nouvelles recherches sur la nature et la propagation du son» в кн.: J.A. Serret, ed., Oeuvres de Lagrange, (Paris, France: Gauthier-Villars, 1867), vol. 1, pages 151—316; на страницах 263—265 Лагранж преобразовывает тройные интегралы в двойные с помощью интегрирования по частям.
- ↑ 1 2 Александрова Н. В. Математические термины.(справочник). М.: Высшая школа, 1978, стр. 150—151.
Литература
- Остроградский М. В. Note sur les integrales definies. // Mem. l’Acad. (VI), 1, стр. 117—122, 29/Х 1828 (1831).
- Остроградский М. В. Memoire sur le calcul des variations des integrales multiples. // Mem. l’Acad., 1, стр. 35—58, 24/1 1834 (1838).