Ковариационная матрица: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Преамбула: пунктуация, стилевые правки
Строка 3: Строка 3:
Ковариационная матрица [[Случайная величина#Типы случайных величин|случайного вектора]] — квадратная симметрическая неотрицательно определенная матрица, на диагонали которой располагаются [[Дисперсия случайной величины|дисперсии]] компонент вектора, а внедиагональные элементы — ковариации между компонентами.
Ковариационная матрица [[Случайная величина#Типы случайных величин|случайного вектора]] — квадратная симметрическая неотрицательно определенная матрица, на диагонали которой располагаются [[Дисперсия случайной величины|дисперсии]] компонент вектора, а внедиагональные элементы — ковариации между компонентами.


Ковариационная матрица случайного вектора является многомерным аналогом дисперсии случайной величины для случайных векторов. Матрица ковариаций двух случайных векторов- многомерный аналог ковариации между двумя случайными величинами.
Ковариационная матрица случайного вектора является многомерным аналогом дисперсии случайной величины для случайных векторов. Матрица ковариаций двух случайных векторов многомерный аналог ковариации между двумя случайными величинами.


В случае нормально распределенного случайного вектора, ковариационная матрица вместе с математическим ожиданием этого вектора полностью определяют его распределение (по аналогии с тем, что математическое ожидание и дисперсия нормально распределенной случайной величины полностью определяют её распределение)
В случае нормально распределённого случайного вектора ковариационная матрица вместе с математическим ожиданием этого вектора полностью определяют его распределение (по аналогии с тем, что математическое ожидание и дисперсия нормально распределённой случайной величины полностью определяют её распределение)


== Определения ==
== Определения ==

Версия от 13:39, 19 января 2022

Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.

Ковариационная матрица случайного вектора — квадратная симметрическая неотрицательно определенная матрица, на диагонали которой располагаются дисперсии компонент вектора, а внедиагональные элементы — ковариации между компонентами.

Ковариационная матрица случайного вектора является многомерным аналогом дисперсии случайной величины для случайных векторов. Матрица ковариаций двух случайных векторов — многомерный аналог ковариации между двумя случайными величинами.

В случае нормально распределённого случайного вектора ковариационная матрица вместе с математическим ожиданием этого вектора полностью определяют его распределение (по аналогии с тем, что математическое ожидание и дисперсия нормально распределённой случайной величины полностью определяют её распределение)

Определения

  • Пусть ,  — два случайных вектора размерности и соответственно. Пусть также случайные величины имеют конечный второй момент (дисперсию), то есть . Тогда матрицей ковариации векторов называется

то есть

,

где

,
математическое ожидание.
  • Если , то называется матрицей ковариации вектора и обозначается .[1] Такая матрица ковариации является обобщением дисперсии для многомерной случайной величины, а её след — скалярным выражением дисперсии многомерной случайной величины. В связи с этим используется также обозначение - вариация (дисперсия) случайного вектора. Собственные векторы и собственные числа этой матрицы позволяют оценить размеры и форму облака распределения такой случайной величины, аппроксимировав его эллипсоидом (или эллипсом в двумерном случае).

Свойства матриц ковариации

  • Сокращённая формула для вычисления матрицы ковариации:
.
.
  • Смена масштаба:
.
  • Если случайные векторы и нескоррелированы (), то
.
,

где  — произвольная матрица размера , а .

  • Перестановка аргументов:
  • Матрица ковариации аддитивна по каждому аргументу:
,
.
  • Если и независимы, то
.

Условная ковариационная матрица

Ковариационная матрица случайного вектора является характеристикой его распределения. В случае (многомерного) нормального распределения математическое ожидание вектора и его ковариационная матрица полностью определяют его распределение. Характеристиками условного распределения одного случайного вектора при условии заданного значения другого случайного вектора являются соответственно условное математическое ожидание (функция регрессии) и условная ковариационная матрица.

Пусть случайные векторы и имеют совместное нормальное распределение с математическими ожиданиями , ковариационными матрицами и матрицей ковариаций . Это означает, что объединенный случайный вектор подчиняется многомерному нормальному распределению с вектором математического ожидания и ковариационной матрицей которую можно представить в виде следующей блочной матрицы

где

Тогда случайный вектор при заданном значении случайного вектора имеет нормальное распределение (условное) со следующим условным математическим ожиданием и условной ковариационной матрицей

Первое равенство определяет функцию линейной регрессии (зависимости условного математического ожидания вектора от заданного значения x случайного вектора ), причем матрица - матрица коэффициентов регрессии.

Условная ковариационная матрица представляет собой матрицу ковариаций случайных ошибок линейных регрессий компонентов вектора на вектор .

В случае если - обычная случайная величина (однокомпонентный вектор), условная ковариационная матрица - это условная дисперсия (по существу - случайной ошибки регрессии на вектор )

Примечания

  1. 1 2 А. Н. Ширяев. Глава 2, §6. Случайные величины II // Вероятность. — 3-е изд. — Cambridge, New York,...: МЦНМО, 2004. — Т. 1. — С. 301. — 520 с.