Эпициклоида: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Нет описания правки |
м Перевод |
||
Строка 35: | Строка 35: | ||
</gallery> |
</gallery> |
||
== Получение == |
== Получение == |
||
[[Image:Epizykloide herleitung.svg|thumb|upright=2.0| |
[[Image:Epizykloide herleitung.svg|thumb|upright=2.0|Эскиз для доказательства]] |
||
:Пусть <math>P</math> - искомая точка, <math>\alpha</math> - угол отклонения точки <math>P</math> от точки касания двух окружностей, <math>\theta</math> - угол отклонения между центрами данных окружностей. |
:Пусть <math>P</math> - искомая точка, <math>\alpha</math> - угол отклонения точки <math>P</math> от точки касания двух окружностей, <math>\theta</math> - угол отклонения между центрами данных окружностей. |
||
:Так как окружность катится без скольжения, то <math>\ell_R=\ell_r</math> |
:Так как окружность катится без скольжения, то <math>\ell_R=\ell_r</math> |
Версия от 17:19, 6 марта 2022
Эпицикло́ида (от др.-греч. ὲπί — на, над, при и κύκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения. По свидетельству Лейбница, Оле Рёмер ранее 1676 года сделал важное в практическом отношении открытие, что эпициклоидические зубцы в зубчатом колесе производят наименьшее трение.
Уравнения
Если центр неподвижной окружности находится в начале координат, её радиус равен , радиус катящейся по ней окружности равен , то эпициклоида описывается параметрическими уравнениями относительно :
где — угол поворота точки, описывающей эпициклоиду, относительно центра подвижной окружности в момент начала движения (против часовой стрелки от оси x), — параметр, но фактически это угол наклона отрезка между центрами к оси .
Можно ввести величину , тогда уравнения предстанут в виде
Величина определяет форму эпициклоиды. При эпициклоида образует кардиоиду, а при — нефроиду. Если — несократимая дробь вида (), то — это количество каспов данной эпициклоиды, а — количество полных вращений катящейся окружности. Если иррациональное число, то кривая является незамкнутой и имеет бесконечное множество несовпадающих каспов.
-
(нефроида)
-
-
-
-
-
-
-
-
Получение
- Пусть - искомая точка, - угол отклонения точки от точки касания двух окружностей, - угол отклонения между центрами данных окружностей.
- Так как окружность катится без скольжения, то
- По определению длины дуги окружности:
- Из данных двух утверждений выплывает, что
- Получаем соотношения для :
- Пусть центр неподвижной окружности , центр второй окружности . Очевидно, что
- Перепишем в координатах:
Следовательно позиция точки :
См. также
В статье не хватает ссылок на источники (см. рекомендации по поиску). |