Фундаментальная группа: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Строка 16: | Строка 16: | ||
</math> |
</math> |
||
Произведением двух гомотопических классов <math>[f]</math> и <math>[g]</math> называется гомотопический класс <math>[f*g]</math> произведения петель. |
Произведением двух гомотопических классов <math>[f]</math> и <math>[g]</math> называется гомотопический класс <math>[f*g]</math> произведения петель. Можно показать, что он не зависит от выбора петель в классах. Множество гомотопических классов петель с таким произведением становится [[группа (математика)|группой]]. Эта группа и называется ''фундаментальной группой'' пространства <math>X</math> с отмеченной точкой <math>x_0</math> и обозначается <math>\pi_1(X,x_0)</math>. |
||
Можно показать, что он не зависит от выбора петель в классах. |
|||
Множество гомотопических классов петель с таким произведением становится [[группа (математика)|группой]]. |
|||
Эта группа и называется '''фундаментальной группой''' пространства <math>X</math> с отмеченной точкой <math>x_0</math> и обозначается <math>\pi_1(X,x_0)</math>. |
|||
== Комментарии == |
== Комментарии == |
Версия от 08:35, 25 июля 2022
Фундамента́льная гру́ппа — определённая группа, которая сопоставляется топологическому пространству. Грубо говоря, эта группа измеряет количество «дырок» в пространстве. Наличие «дырки» определяется невозможностью непрерывно продеформировать некоторую замкнутую кривую в точку.
Определение
Пусть — топологическое пространство с отмеченной точкой . Рассмотрим множество петель в из ; то есть множество непрерывных отображений , таких что . Две петли и считаются эквивалентными, если они гомотопны друг другу в классе петель, то есть найдется соединяющая их гомотопия , удовлетворяющая свойству . Соответствующие классы эквивалентности (обозначаются ) называются гомотопическими классами. Произведением двух петель называется петля, определяемая их последовательным прохождением:
Произведением двух гомотопических классов и называется гомотопический класс произведения петель. Можно показать, что он не зависит от выбора петель в классах. Множество гомотопических классов петель с таким произведением становится группой. Эта группа и называется фундаментальной группой пространства с отмеченной точкой и обозначается .
Комментарии
- Про можно думать как о паре пространств .
- Единицей группы является класс тождественной, или неподвижной петли, обратным элементом — класс петли, пройденной в обратном направлении.
- Если — линейно связное пространство, то с точностью до изоморфизма фундаментальная группа не зависит от отмеченной точки. Поэтому для таких пространств можно писать вместо не боясь вызвать путаницу. Однако для двух точек канонический изоморфизм между и существует лишь если фундаментальная группа абелева.
Связанные определения
- Каждое непрерывное отображение пунктированных пространств индуцирует отображение , определяемое формулой . зависит только от гомотопического класса , и выполняются равенства и . Таким образом, взятие фундаментальной группы вместе с описанной операцией образует функтор .
- Пространство называется односвязным, если оно линейно связно и группа тривиальна (состоит только из единицы).
Примеры
- В есть только один гомотопический класс петель. Следовательно, фундаментальная группа тривиальна, . То же самое верно и для любого пространства-выпуклого подмножества .
- В одномерной сфере (окружности), каждый гомотопический класс состоит из петель, которые навиваются на окружность заданное число раз, которое может быть положительным или отрицательным в зависимости от направления. Следовательно, фундаментальная группа одномерной сферы изоморфна аддитивной группе целых чисел .
- Фундаментальная группа -мерной сферы тривиальна при всех .
- Фундаментальная группа ориентированной замкнутой поверхности рода может быть задана образующими с единственным соотношением: .
Свойства
- Фундаментальная группа пространства зависит только от его гомотопического типа.
- Обратное верно для линейно связных асферических пространств; см. также K(G,n) пространство.
- Если — ретракт , содержащий отмеченную точку , то гомоморфизм , индуцированный вложением , инъективен.
- В частности, фундаментальная группа компоненты линейной связности , содержащей отмеченную точку, изоморфна фундаментальной группе всего .
- Если — строгий деформационный ретракт , то является изоморфизмом.
- сохраняет произведение: для любой пары топологических пространств с отмеченными точками и существует изоморфизм
- естественный по и .
- Теорема ван Кампена: Если — объединение линейно связных открытых множеств , каждое из которых содержит отмеченную точку , и если каждое пересечение линейно связно, то гомоморфизм , индуцированный вложениями , сюрьективен. Кроме того, если каждое пересечение линейно связно, то ядро гомоморфизма — это наименьшая нормальная подгруппа , содержащая все элементы вида (где индуцирован вложением ), а потому индуцирует изоморфизм (первая теорема об изоморфизме).[1] В частности,
- сохраняет копроизведения: естественно по всем .
- (случай двух ): условие для тройных пересечений становится излишним, и получается, что , что является ограниченной (случаем линейно связного ) формой сохранения толчков.
- Свободные группы и только они могут быть реализованы как фундаментальные группы графов (действительно, стягивание остовного дерева в точку реализует гомотопическую эквивалентность графа и букета окружностей, также можно применить теорему ван Кампена).
- Произвольная группа может быть реализована как фундаментальная группа двумерного клеточного комплекса.
- Произвольная конечно заданная группа может быть реализована как фундаментальная группа замкнутого 4-мерного многообразия.
- Фундаментальная группа пространства действует сдвигами на универсальном накрытии этого пространства.
Вариации и обобщения
- Фундаментальная группа является первой из гомотопических групп.
- Фундаментальным группоидом пространства называют группоид , объектами которого являются точки , а морфизмами — гомотопические классы путей с композицией путей. При этом , и если линейно связно, то вложение является эквивалентностью категорий.
Примечания
- ↑ А. Хатчер, Алгебраическая топология, М.: МЦНМО, 2011.
Литература
- Васильев В. А. Введение в топологию. — М.: ФАЗИС, 1997. — 132 с. — ISBN 5-7036-0036-7.
- Матвеев С. В. Фундаментальная группа: Лекции по курсу «Топология». — Челябинск: ЧелГУ, 2001. — 16 с. (есть pdf)
- Фоменко Анатолий Тимофеевич. Дифференциальная геометрия и топология (доп. главы). — R&C dinamic, 1999. — 250 с.