Эпициклоида: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Метки: с мобильного устройства из мобильной версии
Строка 1: Строка 1:
'''Эпицикло́ида''' (от {{lang-grc|ὲπί}} — на, над, при и {{lang-grc2|κύκλος}} — круг, окружность) — [[плоская кривая]], образуемая фиксированной точкой [[окружность|окружности]], катящейся по внешней стороне другой окружности без скольжения.
'''Лох''' (от {{lang-grc|ὲπί}} — на, над, при и {{lang-grc2|κύκλος}} — круг, окружность) — [[плоская кривая]], образуемая фиксированной точкой [[окружность|окружности]], катящейся по внешней стороне другой окружности без скольжения.
По свидетельству Лейбница, Оле Рёмер ранее 1676 года сделал важное в практическом отношении открытие, что эпициклоидические зубцы в зубчатом колесе производят наименьшее трение.
По свидетельству Лейбница, Оле Рёмер ранее 1676 года сделал важное в практическом отношении открытие, что эпициклоидические зубцы в зубчатом колесе производят наименьшее трение.



Версия от 07:33, 20 сентября 2022

Лох (от др.-греч. ὲπί — на, над, при и κύκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения. По свидетельству Лейбница, Оле Рёмер ранее 1676 года сделал важное в практическом отношении открытие, что эпициклоидические зубцы в зубчатом колесе производят наименьшее трение.

Уравнения

Если центр неподвижной окружности находится в начале координат, её радиус равен , радиус катящейся по ней окружности равен , то эпициклоида описывается параметрическими уравнениями относительно :

где  — угол поворота точки, описывающей эпициклоиду, относительно центра подвижной окружности в момент начала движения (против часовой стрелки от оси x),  — параметр, но фактически это угол наклона отрезка между центрами к оси .

Можно ввести величину , тогда уравнения предстанут в виде

Величина определяет форму эпициклоиды. При эпициклоида образует кардиоиду, а при  — нефроиду. Если несократимая дробь вида (), то — это количество каспов данной эпициклоиды, а — количество полных вращений катящейся окружности. Если иррациональное число, то кривая является незамкнутой и имеет бесконечное множество несовпадающих каспов.


Получение

Эскиз для доказательства
Пусть - искомая точка, - угол отклонения точки от точки касания двух окружностей, - угол отклонения между центрами данных окружностей.
Так как окружность катится без скольжения, то
По определению длины дуги окружности:

Из данных двух утверждений выплывает, что

Получаем соотношения для :

Пусть центр неподвижной окружности , центр второй окружности . Очевидно, что
Перепишем в координатах:

Следовательно позиция точки :

См. также