Фундаментальная группа: различия между версиями
[отпатрулированная версия] | [непроверенная версия] |
PYSmirnov (обсуждение | вклад) м почему бы не указать эту ссылку? думаю она может представлять интерес для потенциального читателя Метки: через визуальный редактор с мобильного устройства из мобильной версии |
PYSmirnov (обсуждение | вклад) мНет описания правки |
||
Строка 25: | Строка 25: | ||
== Комментарии == |
== Комментарии == |
||
* Про <math>(X,x_0)</math> можно думать как о [[пара пространств|паре пространств]] |
* Про <math>(X,x_0)</math> можно думать как о [[пара пространств|паре пространств]] <math>(X,\{x_0\})</math>. |
||
* Единицей группы является класс тождественной, или неподвижной петли, обратным элементом — класс петли, пройденной в обратном направлении. |
* Единицей группы является класс тождественной, или неподвижной петли, обратным элементом — класс петли, пройденной в обратном направлении. |
||
* Если <math>X</math> — [[линейно связное пространство]], то с точностью до изоморфизма фундаментальная группа не зависит от отмеченной точки. Поэтому для таких пространств можно писать <math>\pi_1(X)</math> вместо <math>\pi_1(X,x_0)</math> не боясь вызвать путаницу. Однако для двух точек <math>x, y \in X</math> канонический изоморфизм между <math>\pi_1(X, x)</math> и <math>\pi_1(X, y)</math> существует лишь если фундаментальная группа абелева. |
* Если <math>X</math> — [[линейно связное пространство]], то с точностью до изоморфизма фундаментальная группа не зависит от отмеченной точки. Поэтому для таких пространств можно писать <math>\pi_1(X)</math> вместо <math>\pi_1(X,x_0)</math> не боясь вызвать путаницу. Однако для двух точек <math>x, y \in X</math> канонический изоморфизм между <math>\pi_1(X, x)</math> и <math>\pi_1(X, y)</math> существует лишь если фундаментальная группа абелева. |
||
== Связанные определения == |
== Связанные определения == |
||
* Каждое непрерывное отображение пунктированных пространств <math>\varphi: (X, x_0) \to (Y, \varphi(x_0))</math> индуцирует гомоморфизм <math>\varphi_* = \pi_1 \varphi: \pi_1(X, x_0) \to \pi_1(Y, \varphi(x_0))</math>, определяемое формулой <math>\varphi_*[f] = [\varphi f]</math>. Таким образом, взятие фундаментальной группы вместе с описанной операцией образует [[Функтор (математика)|функтор]] <math>\pi_1: \mathbf{hTop} \to \mathbf{Grp}</math>. |
* Каждое непрерывное отображение пунктированных пространств <math>\varphi: (X, x_0) \to (Y, \varphi(x_0))</math> индуцирует гомоморфизм <math>\varphi_* = \pi_1 \varphi: \pi_1(X, x_0) \to \pi_1(Y, \varphi(x_0))</math>, определяемое формулой <math>\varphi_*[f] = [\varphi f]</math>. Таким образом, взятие фундаментальной группы вместе с описанной операцией образует [[Функтор (математика)|функтор]] <math>\pi_1: \mathbf{hTop} \to \mathbf{Grp}</math>. |
||
Строка 36: | Строка 35: | ||
== Примеры == |
== Примеры == |
||
* В <math>\R^n</math> есть только один гомотопический класс петель. Следовательно, фундаментальная группа тривиальна, <math>\pi_1(\mathbb{R}^n) = 0</math>. То же верно и для любого пространства |
* В <math>\R^n</math> есть только один гомотопический класс петель. Следовательно, фундаментальная группа тривиальна, <math>\pi_1(\mathbb{R}^n) = 0</math>. То же верно и для любого пространства — выпуклого подмножества <math>\mathbb{R}^n</math>. |
||
* В окружности <math>\mathbb S^1</math>, каждый гомотопический класс состоит из петель, которые навиваются на окружность заданное число раз, которое может быть положительным или отрицательным в зависимости от направления. Следовательно, фундаментальная группа окружности изоморфна аддитивной группе целых чисел <math>\mathbb{Z}</math>. |
* В окружности <math>\mathbb S^1</math>, каждый гомотопический класс состоит из петель, которые навиваются на окружность заданное число раз, которое может быть положительным или отрицательным в зависимости от направления. Следовательно, фундаментальная группа окружности изоморфна аддитивной группе целых чисел <math>\mathbb{Z}</math>. |
||
Строка 42: | Строка 41: | ||
* Фундаментальная группа <math>n</math>-мерной сферы <math>\mathbb S^n</math> тривиальна при всех <math>n\ge 2</math>. |
* Фундаментальная группа <math>n</math>-мерной сферы <math>\mathbb S^n</math> тривиальна при всех <math>n\ge 2</math>. |
||
* Фундаментальная группа [[Букет окружностей|восьмёрки]] <math> \mathbb{S}^1 \vee \mathbb{S}^1 </math> неабелева |
* Фундаментальная группа [[Букет окружностей|восьмёрки]] <math> \mathbb{S}^1 \vee \mathbb{S}^1 </math> неабелева — это [[свободное произведение]] <math>\mathbb{Z} * \mathbb{Z}</math>. Справедлив более общий результат, следующий из [[Теорема Зейферта — ван Кампена|теоремы ван Кампена]]: если <math>X</math> и <math>Y</math> — [[Линейно связное пространство|линейно связные пространства]] и локально односвязны, то фундаментальная группа их [[Букет пространств|букета]] (склейки по выделенной точке) изоморфна свободному произведению их фундаментальных групп: <math>\pi_1(X \vee Y) \cong \pi_1(X) * \pi_1(Y).</math> |
||
* Фундаментальная группа плоскости <math>\R^2</math> c <math>n</math> выколотыми точками |
* Фундаментальная группа плоскости <math>\R^2</math> c <math>n</math> выколотыми точками — [[свободная группа]] с <math>n</math> порождающими. |
||
* Фундаментальная группа ориентированной замкнутой поверхности [[род поверхности|рода]] <math>g</math> может быть [[задание группы|задана]] образующими <math>a_1,\dots,a_g,b_1,\dots,b_g</math> с единственным соотношением: <math>a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}=1</math>. |
* Фундаментальная группа ориентированной замкнутой поверхности [[род поверхности|рода]] <math>g</math> может быть [[задание группы|задана]] образующими <math>a_1,\dots,a_g,b_1,\dots,b_g</math> с единственным соотношением: <math>a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}=1</math>. |
||
== Свойства == |
== Свойства == |
||
* Фундаментальная группа пространства зависит только от его [[гомотопический тип|гомотопического типа]]. |
* Фундаментальная группа пространства зависит только от его [[гомотопический тип|гомотопического типа]]. |
||
**Обратное верно для линейно связных [[асферическое пространство|асферических пространств]]; см. также [[K(G,n) пространство]]. |
** Обратное верно для линейно связных [[асферическое пространство|асферических пространств]]; см. также [[K(G,n) пространство]]. |
||
* Если <math>A</math> — [[ретракт]] <math>X</math>, содержащий отмеченную точку <math>x_0</math>, то гомоморфизм <math>i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)</math>, индуцированный вложением <math>i: A \hookrightarrow X</math>, [[инъекция (математика)|инъективен]]. |
* Если <math>A</math> — [[ретракт]] <math>X</math>, содержащий отмеченную точку <math>x_0</math>, то гомоморфизм <math>i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)</math>, индуцированный вложением <math>i: A \hookrightarrow X</math>, [[инъекция (математика)|инъективен]]. |
||
Строка 64: | Строка 63: | ||
** (случай двух <math>A_\alpha</math>): условие для тройных пересечений становится излишним, и получается, что <math>\pi_1(A_1 \cup A_2) \cong \pi_1(A_1) \mathbin{\ast_{\pi(A_1 \cap A_2)}} \pi_1(A_2)</math>, что является ограниченной (случаем линейно связного <math>A_1 \cap A_2</math>) формой сохранения [[толчок (математика)|толчков]]. |
** (случай двух <math>A_\alpha</math>): условие для тройных пересечений становится излишним, и получается, что <math>\pi_1(A_1 \cup A_2) \cong \pi_1(A_1) \mathbin{\ast_{\pi(A_1 \cap A_2)}} \pi_1(A_2)</math>, что является ограниченной (случаем линейно связного <math>A_1 \cap A_2</math>) формой сохранения [[толчок (математика)|толчков]]. |
||
* Фундаментальная группа [[топологическая группа|топологической группы]] абелева, как демонстрирует [[аргумент Экманна-Хилтона]]. |
* Фундаментальная группа [[топологическая группа|топологической группы]] абелева, как демонстрирует [[аргумент Экманна-Хилтона]]. |
||
* [[Свободная группа|Свободные группы]] и только они могут быть реализованы как фундаментальные группы [[Граф (математика)|графов]] (действительно, стягивание [[остовное дерево|остовного дерева]] в точку реализует гомотопическую эквивалентность графа и [[букет пространств|букета окружностей]], также можно применить теорему ван Кампена). |
* [[Свободная группа|Свободные группы]] и только они могут быть реализованы как фундаментальные группы [[Граф (математика)|графов]] (действительно, стягивание [[остовное дерево|остовного дерева]] в точку реализует гомотопическую эквивалентность графа и [[букет пространств|букета окружностей]], также можно применить теорему ван Кампена). |
||
Строка 75: | Строка 74: | ||
== Вариации и обобщения == |
== Вариации и обобщения == |
||
* Фундаментальная группа является первой из [[Гомотопические группы|гомотопических групп]]. |
* Фундаментальная группа является первой из [[Гомотопические группы|гомотопических групп]]. |
||
* [[Фундаментальный группоид|Фундаментальным группоидом]] пространства <math>X</math> называют [[группоид (теория категорий)|группоид]] <math>\Pi(X)</math>, объектами которого являются точки <math>X</math>, а морфизмами — гомотопические классы путей с композицией путей. При этом <math>\pi_1(X, x_0) \cong \operatorname{Aut}_{\Pi(X)}x_0</math>, и если <math>X</math> линейно связно, то вложение <math>\pi_1(X, x_0) \hookrightarrow \Pi(X)</math> является [[Эквивалентность категорий|эквивалентностью категорий]]. |
* [[Фундаментальный группоид|Фундаментальным группоидом]] пространства <math>X</math> называют [[группоид (теория категорий)|группоид]] <math>\Pi(X)</math>, объектами которого являются точки <math>X</math>, а морфизмами — гомотопические классы путей с композицией путей. При этом <math>\pi_1(X, x_0) \cong \operatorname{Aut}_{\Pi(X)}x_0</math>, и если <math>X</math> линейно связно, то вложение <math>\pi_1(X, x_0) \hookrightarrow \Pi(X)</math> является [[Эквивалентность категорий|эквивалентностью категорий]]. |
Версия от 11:29, 6 октября 2022
Фундамента́льная гру́ппа — определённая группа, которая сопоставляется топологическому пространству. Грубо говоря, эта группа измеряет количество «дырок» в пространстве. Наличие «дырки» определяется невозможностью непрерывно продеформировать некоторую замкнутую кривую в точку.
Фундаментальная группа пространства обычно обозначается или , последнее обозначение применимо для связных пространств. Тривиалльность фундаментальной группы обычно записывается как , хотя обозначение более уместно.
Определение
Пусть — топологическое пространство с отмеченной точкой . Рассмотрим множество петель в из ; то есть множество непрерывных отображений , таких что . Две петли и считаются эквивалентными, если они гомотопны друг другу в классе петель, то есть найдется соединяющая их гомотопия , удовлетворяющая свойству . Соответствующие классы эквивалентности (обозначаются ) называются гомотопическими классами. Произведением двух петель называется петля, определяемая их последовательным прохождением:
Произведением двух гомотопических классов и называется гомотопический класс произведения петель. Можно показать, что он не зависит от выбора петель в классах. Множество гомотопических классов петель с таким произведением становится группой. Эта группа и называется фундаментальной группой пространства с отмеченной точкой и обозначается .
Комментарии
- Про можно думать как о паре пространств .
- Единицей группы является класс тождественной, или неподвижной петли, обратным элементом — класс петли, пройденной в обратном направлении.
- Если — линейно связное пространство, то с точностью до изоморфизма фундаментальная группа не зависит от отмеченной точки. Поэтому для таких пространств можно писать вместо не боясь вызвать путаницу. Однако для двух точек канонический изоморфизм между и существует лишь если фундаментальная группа абелева.
Связанные определения
- Каждое непрерывное отображение пунктированных пространств индуцирует гомоморфизм , определяемое формулой . Таким образом, взятие фундаментальной группы вместе с описанной операцией образует функтор .
- Пространство называется односвязным, если оно линейно связно и группа тривиальна (состоит только из единицы).
Примеры
- В есть только один гомотопический класс петель. Следовательно, фундаментальная группа тривиальна, . То же верно и для любого пространства — выпуклого подмножества .
- В окружности , каждый гомотопический класс состоит из петель, которые навиваются на окружность заданное число раз, которое может быть положительным или отрицательным в зависимости от направления. Следовательно, фундаментальная группа окружности изоморфна аддитивной группе целых чисел .
- Фундаментальная группа -мерной сферы тривиальна при всех .
- Фундаментальная группа восьмёрки неабелева — это свободное произведение . Справедлив более общий результат, следующий из теоремы ван Кампена: если и — линейно связные пространства и локально односвязны, то фундаментальная группа их букета (склейки по выделенной точке) изоморфна свободному произведению их фундаментальных групп:
- Фундаментальная группа плоскости c выколотыми точками — свободная группа с порождающими.
- Фундаментальная группа ориентированной замкнутой поверхности рода может быть задана образующими с единственным соотношением: .
Свойства
- Фундаментальная группа пространства зависит только от его гомотопического типа.
- Обратное верно для линейно связных асферических пространств; см. также K(G,n) пространство.
- Если — ретракт , содержащий отмеченную точку , то гомоморфизм , индуцированный вложением , инъективен.
- В частности, фундаментальная группа компоненты линейной связности , содержащей отмеченную точку, изоморфна фундаментальной группе всего .
- Если — строгий деформационный ретракт , то является изоморфизмом.
- сохраняет произведение: для любой пары топологических пространств с отмеченными точками и существует изоморфизм
- естественный по и .
- Теорема ван Кампена: Если — объединение линейно связных открытых множеств , каждое из которых содержит отмеченную точку , и если каждое пересечение линейно связно, то гомоморфизм , индуцированный вложениями , сюрьективен. Кроме того, если каждое пересечение линейно связно, то ядро гомоморфизма — это наименьшая нормальная подгруппа , содержащая все элементы вида (где индуцирован вложением ), а потому индуцирует изоморфизм (первая теорема об изоморфизме).[1] В частности,
- сохраняет копроизведения: естественно по всем .
- (случай двух ): условие для тройных пересечений становится излишним, и получается, что , что является ограниченной (случаем линейно связного ) формой сохранения толчков.
- Фундаментальная группа топологической группы абелева, как демонстрирует аргумент Экманна-Хилтона.
- Свободные группы и только они могут быть реализованы как фундаментальные группы графов (действительно, стягивание остовного дерева в точку реализует гомотопическую эквивалентность графа и букета окружностей, также можно применить теорему ван Кампена).
- Произвольная группа может быть реализована как фундаментальная группа двумерного клеточного комплекса.
- Произвольная конечно заданная группа может быть реализована как фундаментальная группа замкнутого 4-мерного многообразия.
- Фундаментальная группа пространства действует сдвигами на универсальном накрытии этого пространства (если универсальное накрытие определено).
Вариации и обобщения
- Фундаментальная группа является первой из гомотопических групп.
- Фундаментальным группоидом пространства называют группоид , объектами которого являются точки , а морфизмами — гомотопические классы путей с композицией путей. При этом , и если линейно связно, то вложение является эквивалентностью категорий.
Примечания
- ↑ А. Хатчер, Алгебраическая топология, М.: МЦНМО, 2011.
Литература
- Васильев В. А. Введение в топологию. — М.: ФАЗИС, 1997. — 132 с. — ISBN 5-7036-0036-7.
- Матвеев С. В. Фундаментальная группа: Лекции по курсу «Топология». — Челябинск: ЧелГУ, 2001. — 16 с. (есть pdf)
- Фоменко Анатолий Тимофеевич. Дифференциальная геометрия и топология (доп. главы). — R&C dinamic, 1999. — 250 с.