Длина окружности: различия между версиями
[отпатрулированная версия] | [непроверенная версия] |
м Cleaning up redundant parameters added by prior faulty versions.) #IABot (v2.0.8.8 |
Kirelagin (обсуждение | вклад) м Удалена бессмысленная калька с оригинальной статьи на английском |
||
Строка 1: | Строка 1: | ||
[[File:Circle-withsegments.svg|thumb|'''Длина окружности''' C с диаметром D, радиусом R и центром O. Circumference = <math>\pi</math> × D = 2 × <math>\pi</math> × R.]] |
[[File:Circle-withsegments.svg|thumb|'''Длина окружности''' C с диаметром D, радиусом R и центром O. Circumference = <math>\pi</math> × D = 2 × <math>\pi</math> × R.]] |
||
'''Длина окружности''' |
'''Длина окружности''' — это длина замкнутой плоской кривой, ограничивающей круг. Поскольку окружность является границей круга, или диска, длина окружности является частным случаем периметра<ref>{{citation|first1=Jeffrey|last1=Bennett|first2=William|last2=Briggs|title=Using and Understanding Mathematics / A Quantitative Reasoning Approach (англ.)|edition=3rd|publisher=Addison-Wesley|year=2005|isbn=978-0-321-22773-7|page=580}} </ref><ref>{{cite web | url =http://www-rohan.sdsu.edu/~pwbrock/files/UNIT9.3.pdf | title =Perimeter, Area and Circumference | author =San Diego State University | publisher =[[Addison-Wesley]] | year =2004 | archive-url =https://web.archive.org/web/20141006153741/http://www-rohan.sdsu.edu/~pwbrock/files/UNIT9.3.pdf | archive-date =2014-10-06 | author-link =San Diego State University | accessdate =2020-03-06 | deadlink =yes }}</ref>. [[Периметр]] — общая длина границы фигуры. |
||
== Круг == |
== Круг == |
Версия от 04:45, 19 ноября 2022
Длина окружности — это длина замкнутой плоской кривой, ограничивающей круг. Поскольку окружность является границей круга, или диска, длина окружности является частным случаем периметра[1][2]. Периметр — общая длина границы фигуры.
Круг
Длина окружности может быть определена как предел последовательности периметров вписанных в круг правильных многоугольников[3]. Термин длина окружности используется при измерении физических объектов, а также, если рассматривать абстрактные геометрические формы.
Длина окружности и число пи
Длина окружности связана с одной из самых важных математических констант — числом пи. Число пи обозначается греческой буквой пи (). Первые цифры числа в десятичной записи — 3.141592653589793 ...[4] Пи определяется как отношение длины окружности к её диаметру :
Или, что эквивалентно, как отношение длины окружности к двум ее радиусам. Формула выше принимает вид:
Использование константы является повсеместным в науке и приложениях.
В книге «Измерение круга[англ.]», написанной около 250 до н.э., Архимед показал, что это отношение (, поскольку он не использовал обозначение ) больше 310/71, но меньше 31/7, вычислив периметры вписанного и описанного многоугольника с 96 сторонами[5]. Этот метод аппроксимации числа использовался столетиями, так как имел большую точность, нежели формулы многоугольников с большим числом сторон. Последнее такое вычисление производилось в 1630 году Кристоф Гринбергер[англ.], использовавшим многоугольники с 1040 сторонами.
Эллипс
Нет общей формулы для вычисления длины границы эллипса через большие и малые полуоси эллипса, которая бы использовала только элементарные функции. Однако, есть приближённые формулы, в которых фигурируют эти параметры. Одно из приближений получено Эйлером (1773); периметр эллипса, записанного каноническим уравнением:
приблизительно равен
Нижние и верхние границы периметра канонического эллипса при [6].
Здесь верхняя граница — длина описанной концентричной окружности, проходящего через концевые точки больших осей эллипса, а нижняя граница — периметр вписанного ромба, вершины которого — концы больших и малых осей.
Периметр эллипса может быть описан с помощью полного эллиптического интеграла второго рода[7]. Более точно:
где — длина большой полуоси и — эксцентриситет
См. также
Примечания
- ↑ Bennett, Jeffrey; Briggs, William (2005), Using and Understanding Mathematics / A Quantitative Reasoning Approach (англ.) (3rd ed.), Addison-Wesley, p. 580, ISBN 978-0-321-22773-7
- ↑ San Diego State University. Perimeter, Area and Circumference . Addison-Wesley (2004). Дата обращения: 6 марта 2020. Архивировано из оригинала 6 октября 2014 года.
- ↑ Jacobs, Harold R. (1974), Geometry (англ.), W. H. Freeman and Co., p. 565, ISBN 0-7167-0456-0
- ↑ Sloane, N. J. A. Sequence A000796, On-Line Encyclopedia of Integer Sequences OEIS, OEIS Foundation.
{{citation}}
: Википедия:Обслуживание CS1 (числовые имена: authors list) (ссылка) - ↑ Katz, Victor J. (1998), A History of Mathematics / An Introduction (англ.) (2nd ed.), Addison-Wesley Longman, p. 109, ISBN 978-0-321-01618-8
- ↑ Jameson, G.J.O. Inequalities for the perimeter of an ellipse (англ.) (англ.) // Mathematical Gazette[англ.] : journal. — 2014. — Vol. 98, no. 499. — P. 227—234. — doi:10.2307/3621497. — .
- ↑ Almkvist, Gert; Berndt, Bruce (1988), "Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, pi, and the Ladies Diary (англ.)", American Mathematical Monthly, 95 (7): 585—608, doi:10.2307/2323302, JSTOR 2323302, MR 0966232
Литература
- Атанасян Л. С., Бутузов В. Ф. и др. Дополнительные главы к учебнику 8 класса // Геометрия. — 3-е издание. — М.: Вита-Пресс, 2003.
- Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
- Переиздание: М.: АСТ, 2006, ISBN 5-17-009554-6, 509 стр.