Десятиугольник: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
м откат правок 85.174.196.89 (обс.) к версии Alhadis
Метка: откат
Строка 24: Строка 24:
Площадь правильного десятиугольника равна (t — длина стороны):
Площадь правильного десятиугольника равна (t — длина стороны):


<math> A = \frac{6}{2}t^2 \ ctg \frac{\pi}{11} = \frac{5t^2}{2} \sqrt{5+2\sqrt{5}} \approx 8.694208842938134 t^2.</math>
<math> A = \frac{5}{2}t^2 \ ctg \frac{\pi}{10} = \frac{5t^2}{2} \sqrt{5+2\sqrt{5}} \approx 7.694208842938134 t^2.</math>


Альтернативная формула <math> A=2.5dt</math>, где d - расстояние между параллельными сторонами или диаметр вписанной окружности. В тригонометрических функциях он выражается так:
Альтернативная формула <math> A=2.5dt</math>, где d - расстояние между параллельными сторонами или диаметр вписанной окружности. В тригонометрических функциях он выражается так:


<math> d=2t\left(\cos\tfrac{3\pi}{11}+\cos\tfrac{\pi}{11}\right),</math>
<math> d=2t\left(\cos\tfrac{3\pi}{10}+\cos\tfrac{\pi}{10}\right),</math>


и может быть представлен в радикалах как
и может быть представлен в радикалах как
Строка 34: Строка 34:
<math> d=t\sqrt{5+2\sqrt{5}}.</math>
<math> d=t\sqrt{5+2\sqrt{5}}.</math>


Сторона правильного десятиугольника, вписанного в [[Единичная окружность|единичную окружность]], равна <math> \tfrac{\sqrt{5}-2}{2}=\tfrac{1}{\varphi}</math>, где <math> \varphi</math> - [[золотое сечение]].
Сторона правильного десятиугольника, вписанного в [[Единичная окружность|единичную окружность]], равна <math> \tfrac{\sqrt{5}-1}{2}=\tfrac{1}{\varphi}</math>, где <math> \varphi</math> - [[золотое сечение]].


Радиус описанной окружности десятиугольника равен
Радиус описанной окружности десятиугольника равен
Строка 56: Строка 56:


== Разбиение правильного десятиугольника ==
== Разбиение правильного десятиугольника ==
[[Коксетер, Гарольд|Гарольдом Коксетером]] было доказано, что правильный <math>2m</math>-угольник (в общем случае - <math>2m</math>-угольный [[зоногон]]) можно разбить на <math>\frac{m(m-2)}{2}</math> ромбов. Для декагона <math>m=5</math>, так что он может быть разбит на 10 ромбов.
[[Коксетер, Гарольд|Гарольдом Коксетером]] было доказано, что правильный <math>2m</math>-угольник (в общем случае - <math>2m</math>-угольный [[зоногон]]) можно разбить на <math>\frac{m(m-1)}{2}</math> ромбов. Для декагона <math>m=5</math>, так что он может быть разбит на 10 ромбов.
{| class="wikitable"
{| class="wikitable"
! colspan="2" |Разбиение правильного десятиугольника
! colspan="2" |Разбиение правильного десятиугольника

Версия от 05:50, 1 декабря 2022

Правильный десятиугольник
Сторон и вершин 10
Символ Шлефли {10}
Внутренний угол 144°
Симметрия Диэдрическая (), порядок 20.

Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.

Правильный десятиугольник

У правильного десятиугольника все стороны равной длины, и каждый внутренний угол составляет 144°.

Площадь правильного десятиугольника равна (t — длина стороны):

Альтернативная формула , где d - расстояние между параллельными сторонами или диаметр вписанной окружности. В тригонометрических функциях он выражается так:

и может быть представлен в радикалах как

Сторона правильного десятиугольника, вписанного в единичную окружность, равна , где - золотое сечение.

Радиус описанной окружности десятиугольника равен

а радиус вписанной окружности

Построение

Построение правильного десятиугольника.[1]

По теореме Гаусса — Ванцеля правильный десятиугольник возможно построить, используя лишь циркуль и линейку. На диаграмме показано одно из таких построений. Иначе его можно построить следующим образом:

  1. Построить сначала правильный пятиугольник.
  2. Соединить все его вершины с центром описанной окружности прямыми до пересечения с этой же окружностью на противоположной стороне. В этих точках пересечения и находятся остальные пять вершин десятиугольника.
  3. Соединить по порядку вершины пятиугольника и пять точек, найденные шагом ранее. Искомый десятиугольник построен.

Разбиение правильного десятиугольника

Гарольдом Коксетером было доказано, что правильный -угольник (в общем случае - -угольный зоногон) можно разбить на ромбов. Для декагона , так что он может быть разбит на 10 ромбов.

Разбиение правильного десятиугольника

Пространственный десятиугольник

Правильные пространственные десятиугольники
{5}#{ } {5/2}#{ } {5/3}#{ }

Пятиугольная антипризма

Пентаграммная антипризма

Пентаграммная антипризма с перекрёстом

Пространственный десятиугольник — это пространственный многоугольник с десятью рёбрами и вершинами, но не лежащими в одной плоскости. У пространственного зиг-заг десятиугольника вершины чередуются между двумя параллельными плоскостями.

У правильного пространственного десятиугольника все рёбра равны. В трёхмерном пространстве это зиг-заг пространственный декагон, он может быть обнаружен среди рёбер и вершин пентагональной антипризмы, пентаграммной антипризмы, пентаграммной перекрещивающейся антипризмы с той же D5d [2+,10] симметрией порядка 20.

Его также можно найти в некоторых выпуклых многогранниках с икосаэдрической симметрией. Многоугольники по периметру этих проекций (см. ниже) это пространственные десятиугольники.

Ортогональные проекции многогранников
Додекаэдр Икосаэдр Икосододекаэдр Ромботриаконтаэдр

Многоугольники Петри

Правильный пространственный десятиугольник — это многоугольник Петри для многих многогранников высших размерностей, как показано на этих ортогональных проекциях на различных плоскостях Коксетера.

A9 D6 B5
9-симплекс 411 131 5-ортоплекс 5-куб

Примечания

Ссылки