Феномен Рунге: различия между версиями
[отпатрулированная версия] | [непроверенная версия] |
Нет описания правки |
Нет описания правки |
||
Строка 14: | Строка 14: | ||
}}</ref>. |
}}</ref>. |
||
Рассмотрим функцию <math>f(x) = \frac{1}{1+ |
Рассмотрим функцию <math>f(x) = \frac{1}{1+25x^2}.</math> Если интерполировать её по равноотстоящим узлам <math>x_i</math> между −5 и 5. <math>x_i = -5 + (i-1)\frac{10}{n},\quad i \in \left\{ 1, 2, \dots, n+1 \right\}</math> полиномом <math>P_n(x)</math> со степенью меньше или равной <math>n</math>, то полученный [[интерполянт]] будет осциллировать ближе к концам интервала. С возрастанием степени полинома [[погрешность]] интерполяции стремится к бесконечности: <math>\lim_{n \rightarrow \infty} \left( \max_{-5 \leq x \leq 5} | f(x) - P_n(x)| \right) = \infty.</math> |
||
Такой эффект роста уклонения при росте степени многочлена зависит как от выбираемой последовательности узлов, так и от интерполируемой функции. |
Такой эффект роста уклонения при росте степени многочлена зависит как от выбираемой последовательности узлов, так и от интерполируемой функции. |
Версия от 14:24, 3 января 2023
Феномен (явление) Рунге — в численном анализе эффект нежелательных осцилляций, возникающий при интерполяции полиномами высоких степеней. Был открыт Карлом Рунге при изучении ошибок полиномиальной интерполяции для приближения некоторых функций[1].
Рассмотрим функцию Если интерполировать её по равноотстоящим узлам между −5 и 5. полиномом со степенью меньше или равной , то полученный интерполянт будет осциллировать ближе к концам интервала. С возрастанием степени полинома погрешность интерполяции стремится к бесконечности:
Такой эффект роста уклонения при росте степени многочлена зависит как от выбираемой последовательности узлов, так и от интерполируемой функции. А именно, для любой последовательности узлов можно подобрать такую непрерывную функцию, что ошибка ее интерполяции по этим конкретным узлам будет неограниченно расти. С другой стороны, согласно аппроксимационной теореме Вейерштрасса, для любой непрерывной функции на отрезке можно подобрать последовательность полиномов, равномерно сходящихся к этой функции на отрезке. Это теоретически позволяет подобрать (для этой конкретной функции) последовательность узлов без феномена Рунге.
Компромиссом можно считать узлы Чебышёва, погрешность интерполяции по ним равномерно убывает для любой абсолютно непрерывной функции.
Примечания
- ↑ Рунге, Карл. Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten (нем.) // Zeitschrift für Mathematik und Physik. — 1901. — Bd. 46. — S. 224—243.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |