Сложная система: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
отмена правки 128397803 участницы Рейму Хакурей (обс.)
Метки: отмена ссылка на неоднозначность
Строка 68: Строка 68:
== Известные ученные==
== Известные ученные==
{{columns-list|colwidth=20em|
{{columns-list|colwidth=20em|
* [[Богданов, Александр Александрович|Александр Богданов]]
* [[Филип Андерсон]]
* [[Филип Андерсон]]
* [[Кеннет Эрроу]]
* [[Кеннет Эрроу]]
Строка 73: Строка 74:
* [[Пер Бак]]
* [[Пер Бак]]
* [[Людвиг фон Берталанфи]]
* [[Людвиг фон Берталанфи]]
* [[Александр Богданов]]
* [[Джошуа Эпштейн]]
* [[Джошуа Эпштейн]]
* [[Джей Форрестер]]
* [[Джей Форрестер]]

Версия от 07:23, 9 февраля 2023

Сложная система — система, состоящая из множества взаимодействующих составляющих (подсистем), вследствие чего она приобретает новые свойства, которые отсутствуют на подсистемном уровне и не могут быть сведены к свойствам подсистемного уровня. Примерами сложных систем являются глобальный климат Земли, организмы, человеческий мозг, инфраструктура, такая как электросеть, транспортные или коммуникационные системы, сложное программное обеспечение и электронные системы, социальные и экономические организации (например, города), экосистема, живая клетка и, в конечном счете, вся вселенная.

Открытые системы имеют входные и выходные потоки, представляющие обмен веществом, энергией или информацией с окружающей средой..

Сложные системы — это системы, поведение которых трудно смоделировать из-за зависимостей, конкуренции, отношений или других типов взаимодействия между их частями или между данной системой и ее окружением. «Сложные» системы имеют определенные свойства, возникающие из этих отношений, такие как нелинейность динамики, эмерджентность, спонтанный порядок, адаптация и петли обратной связи, среди прочего. Поскольку такие системы появляются в самых разных областях, общие черты между ними стали предметом их самостоятельной области исследований. Во многих случаях полезно представить такую систему как сеть, где узлы представляют компоненты и связи между ними.

Термин «сложные системы» часто относится к изучению сложных систем, что представляет собой подход к науке, который исследует, как отношения между частями системы порождают ее коллективное поведение и как система взаимодействует и формирует отношения с окружающей средой.

Сложность

Сложность системы означает то, что поведение систем не может быть легко выведено из ее свойств. До сих пор не появилось полностью общей теории сложных систем для решения этих проблем, поэтому исследователи должны решать их в контексте конкретной предметной области. Исследователи сложных систем решают эти проблемы, рассматривая главную задачу моделирования как захват, а не уменьшение сложности соответствующих интересующих их систем.

Хотя общепринятого точного определения сложности пока не существует, существует множество архетипических примеров сложности. Системы могут быть сложными, если, например, они обладают хаотическим поведением (поведение, проявляющее чрезвычайную чувствительность к начальным условиям, среди других свойств), или если они обладают эмерджентными свойствами (свойствами, которые не проявляются из их компонентов по отдельности, но которые являются результатом отношений и зависимостей, которые они образуют, когда помещены вместе в система), или если они с вычислительной точки зрения трудно поддаются моделированию (если они зависят от ряда параметров, которые слишком быстро растут по отношению к размеру системы).

Пример решения в аттракторе Лоренца при ρ = 28, σ = 10 и β = 8/3

Сети

Взаимодействующие компоненты сложной системы образуют сеть, которая представляет собой совокупность дискретных объектов и связей между ними, обычно изображаемых в виде графа вершин, соединенных ребрами. Сети могут описывать отношения между отдельными лицами внутри организации, между логическими элементами в схеме, между генами в сетях регулирования генов или между любым другим набором связанных объектов.

Сети часто описывают источники сложности в сложных системах. Таким образом, изучение сложных систем как сетей открывает множество полезных применений теории графов и сетевой науки. Многие сложные системы, например, также являются сложными сетями, которые обладают такими свойствами, как фазовые переходы и степенные распределения степеней, которые легко поддаются эмерджентному или хаотическому поведению. Тот факт, что число ребер в полном графе растет квадратично по отношению к числу вершин, проливает дополнительный свет на источник сложности в больших сетях: по мере роста сети количество связей между объектами быстро затмевает количество объектов в сети.

Характеристики

По Растригину[1], строгое определение сложной системы ещё не найдено, но к некоторым чертам сложной системы (как объекта управления) относятся:

  • Отсутствие математического описания или алгоритма,
  • «Зашумлённость», выражающаяся в затруднении наблюдения и управления. Обусловлена не столько наличием генераторов случайных помех, сколько большим числом второстепенных (для целей управления) процессов,
  • «Нетерпимость» к управлению. Система существует не для того, чтобы ей управляли,
  • Нестационарность, выражающаяся в дрейфе характеристик, изменении параметров, эволюции во времени,
  • Невоспроизводимость экспериментов с ней.

История

Хотя, возможно, люди изучали сложные системы на протяжении тысячелетий, современное научное изучение сложных систем относительно молодо по сравнению с устоявшимися областями науки, такими как физика и химия. История научного изучения этих систем следует нескольким различным направлениям исследований.

В области математики, возможно, самым большим вкладом в изучение сложных систем стало открытие хаоса в детерминированных системах, особенности некоторых динамических систем, которая тесно связана с нелинейностью.[20] Изучение нейронных сетей также было неотъемлемой частью развития математики, необходимой для изучения сложных систем.

Понятие самоорганизующихся систем связано с работами в области неравновесной термодинамики, в том числе с работами, впервые проведенными химиком и нобелевским лауреатом Ильей Пригожиным в его исследовании диссипативных структур. Еще более древней является работа Хартри-Фока по уравнениям квантовой химии и более поздним расчетам структуры молекул, которые

Сложность и моделирование

Планерная пушка Госпера, создающая "планеры" в игре жизни клеточного автомата Конвея [2]


Одним из главных вкладов Фридриха Хайека в раннюю теорию сложности является его различие между способностью человека предсказывать поведение простых систем и его способностью предсказывать поведение сложных систем с помощью научного моделирования. Он считал, что экономика и науки о сложных явлениях в целом, которые, по его мнению, включали биологию, психологию и так далее, не могут быть смоделированы по образцу наук, которые имеют дело с по существу простыми явлениями, такими как физика. Хайек, в частности, объяснил бы, что сложные явления с помощью моделирования могут допускать только шаблонные предсказания по сравнению с точными предсказаниями, которые могут быть сделаны из несложных явлений.

Управление сложностью

Графическое представление альтернативных стабильных состояний и направление критического замедления перед критическим переходом (взято из Lever et al. 2020).[3] Верхние панели (a) указывают ландшафты стабильности при различных условиях. Средние панели (b) указывают скорости изменения, аналогичные наклону ландшафтов стабильности, а нижние панели (c) указывают восстановление после возмущения в направлении будущего состояния системы (c.I) и в другом направлении (c.II).

Поскольку проекты и поглощения становятся все более сложными, перед компаниями и правительствами стоит задача найти эффективные способы управления мегазакупками, такими как боевые системы будущего армии. Приобретения, такие как БСБ, опираются на сеть взаимосвязанных частей, которые взаимодействуют непредсказуемым образом. По мере того как приобретения становятся все более сетецентричными и сложными, предприятия будут вынуждены находить способы управления сложностью, в то время как правительствам будет предложено обеспечить эффективное управление для обеспечения гибкости и отказоустойчивости. [4]

Экономика сложности

За последние десятилетия в развивающейся области экономики сложности были разработаны новые инструменты прогнозирования для объяснения экономического роста. Так обстоит дело с моделями, построенными Институтом Санта-Фе в 1989 году, и более поздним индексом экономической сложности (ECI), введенным физиком из Массачусетского технологического института Сезаром А. Идальго и экономистом из Гарварда Рикардо Хаусманом. Основываясь на ECI, Хаусманн, Идальго и их команда из Обсерватории экономической сложности подготовили прогнозы ВВП на 2020 год. Количественный анализ повторяемости был использован для определения характеристик бизнес-циклов и экономического развития. С этой целью Орландо и др. [5] разработали так называемый индекс корреляции количественной оценки повторяемости (RQCI) для проверки корреляций RQA с выборочным сигналом, а затем исследовали применение к бизнес-временным рядам. Было доказано, что указанный индекс обнаруживает скрытые изменения во временных рядах. Далее, Орландо и др. [6] на обширном наборе данных показали, что анализ количественной оценки повторяемости может помочь в прогнозировании переходов от ламинарных (т.е. регулярных) к турбулентным (т.е. хаотическим) фазам, таким как ВВП США в 1949, 1953 и т.д. И последнее, но не менее важное: было продемонстрировано, что количественный анализ повторяемости может выявлять различия между макроэкономическими переменными и выявлять скрытые особенности экономической динамики.

Шкала Боулдинга

Американский экономист Кеннет Боулдинг предложил шкалу сложности систем, состоящую из девяти уровней[7][8].

  1. Уровень статической структуры. К таким системам можно отнести: расположение электронов в атоме, строение кристалла, анатомию животного и т. п.
  2. Простые детерминированные динамические системы. Примеры: Солнечная система, механическое устройство, структура теории наук вроде физики и химии.
  3. Уровень управляющего механизма или кибернетической системы, уровень термостата. Система характерна тем, что стремится к сохранению равновесия.
  4. Уровень открытой или самосохраняющейся системы, уровень клетки. Кроме биологических объектов, к этому уровню можно отнести реки и пожары.
  5. Уровень генетического сообщества. Примерами могут являться растения. Характерен специализацией клеток. Система характеризуется разрозненностью приёмников информации и неспособностью обрабатывать её большие объёмы.
  6. Уровень животных. Системы характеризуются мобильностью, целесообразным поведением, самосохранением. Развитые информационные рецепторы, нервная система, мозг.
  7. Уровень человека. Самосознание, отличное от простого самосохранения. Рефлексия. Речь.
  8. Уровень социальной организации.
  9. Уровень трансцендентальных систем, не поддающихся анализу, но обладающих структурой.

Примеры

Файл:2018 Map of the Complexity Sciences HD.jpg
Взгляд на развитие науки о сложности (см. Ссылку для читаемой версии)[9]

Свойства атома водорода, такие, например, как спектральные характеристики его излучения, есть свойства сложной системы, которые несводимы к свойствам его составляющих — электрона и протона (каждый из которых в свою очередь представляет собой систему).

Прочее

Для обнаружения структур сообществ[англ.] в сложных системах используется алгоритм Гирван — Ньюмена.

Известные ученные

См. также

Примечания

Литература

  • Боулдинг К. Общая теория систем — скелет науки. — М.: Наука, 1969. — (Исследования по общей теории систем).
  • Мамчур Ε. Α., Овчинников Η. Ф., Уёмов А. И. Принцип простоты и меры сложности. — М.: Наука, 1989. — С. 162—164. — 304 с. — ISBN 5-02-007942-1.
  • Растригин Л. А. Адаптация сложных систем: Методы и приложения. — Рига: Зинатне, 1981. — 375 с. — 1500 экз. Архивная копия от 18 февраля 2015 на Wayback Machine