Задача выполнимости булевых формул: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Loveless (обсуждение | вклад) м робот изменил: he:בעיית הספיקות |
Sl (обсуждение | вклад) мНет описания правки |
||
Строка 49: | Строка 49: | ||
[[th:ปัญหาความสอดคล้องแบบบูล]] |
[[th:ปัญหาความสอดคล้องแบบบูล]] |
||
[[uk:Задача здійсненностіі бульових формул]] |
[[uk:Задача здійсненностіі бульових формул]] |
||
[[zh:布尔可 |
[[zh:布尔可满足性问题]] |
Версия от 11:15, 2 января 2009
Задача выполнимости булевых формул (SAT или ВЫП) — задача распознавания, важная для теории вычислительной сложности.
Экземпляром задачи SAT является булева формула, состоящая только из имен переменных, скобок и операций (И), (ИЛИ) и (HE). Задача заключается в следующем: можно ли назначить всем переменным, встречающимся в формуле, значения ЛОЖЬ и ИСТИНА так, чтобы формула стала истинной.
Согласно теореме Кука, доказанной Стивеном Куком в 1971-м году, задача SAT NP-полна.
Точная формулировка
Чтобы четко сформулировать задачу распознавания, необходимо условиться об алфавите, с помощью которого задаются экземпляры языка. Этот алфавит должен быть фиксирован и конечен. В своей книге Хопкрофт, Мотвани и Ульман предлагают использовать следующий алфавит: {«», «», «», «», «», «», «», «»}.
При использовании такого алфавита скобки и операторы записываются естественным образом, а переменные получают следующие имена: x1, x10, x11, x100 и т. д., согласно их номерам, записанным в двоичной системе счисления.
Пусть некоторая булева формула, записанная в обычной математической нотации, имела длину символов. В ней каждое вхождение каждой переменной было описано хотя бы одним символом, следовательно, всего в данной формуле не более переменных. Значит, в предложенной выше нотации каждая переменная будет записана с помощью символов. В таком случае, вся формула в новой нотации будет иметь длину символов, то есть длина строки возрастет в полиномиальное число раз.
Например, формула примет вид .
Вычислительная сложность
В 1971-м году в статье Стивена Кука был впервые введен термин «NP-полная задача», и задача SAT была первой задачей, для которой доказывалось это свойство.
В доказательстве теоремы Кука каждая задача из класса NP в явном виде сводится к SAT. После появления результатов Кука была доказана NP-полнота для множества других задач. При этом чаще всего для доказательства NP-полноты некоторой задачи приводится полиномиальное сведение задачи SAT к данной задаче, возможно в несколько шагов, то есть с использованием нескольких промежуточных задач.
Частные случаи задачи SAT
Интересными важными частными случаями задачи SAT являются:
- Задача выполнимости булевых формул в конъюнктивной нормальной форме (SATCNF или ВКНФ) — аналогичная задача, с наложенной на формулу условием: она должна быть записана в конъюнктивной нормальной форме. Задача ВКНФ также NP-полна.
- Задача выполнимости булевых формул в k-конъюнктивной нормальной форме (k-SAT или k-ВЫП) — задача выполнимости при условии, что формула записана в k-конъюнктивной нормальной форме. Эта задача является NP-полной при .
- Задача выполнимости булевых формул в 2-конъюнктивной нормальной форме имеет полиномиальное решение, то есть принадлежит классу P.