Геометрическая прогрессия: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 135: Строка 135:
=== Свойства суммы геометрической прогрессии ===
=== Свойства суммы геометрической прогрессии ===


* <math>b_{n+1} = S_{n+1} - S_n </math>
* <math>b_{n} = S_{n+1} - S_n </math>
* <math>S_n = \sigma_n \cdot b_1b_n </math>
* <math>S_n = \sigma_n \cdot b_1b_n </math>



Версия от 10:07, 7 марта 2023

Геометри́ческая прогре́ссия — последовательность чисел , , , (члены прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего члена умножением его на фиксированное число (знаменатель прогрессии). При этом [1].

Геометрическая прогрессия называется бесконечно убывающей[2], если знаменатель прогрессии по абсолютной величине меньше единицы.


Произведением первых членов геометрической прогрессии называется произведение от до , то есть выражение вида Обозначение: .

Описание

Любой член геометрической прогрессии может быть вычислен по формуле

Если и , прогрессия является возрастающей последовательностью, если , — убывающей последовательностью, а при  — знакочередующейся[3], при  — стационарной (постоянной).

Своё название прогрессия получила по своему характеристическому свойству:

то есть модуль любого члена геометрической прогрессии, кроме первого, равен среднему геометрическому (среднему пропорциональному) двух рядом с ним стоящих членов[4].

Примеры

Получение новых квадратов путём соединения середин сторон предыдущих квадратов
  • Последовательность площадей квадратов, где каждый следующий квадрат получается соединением середин сторон предыдущего — бесконечная геометрическая прогрессия со знаменателем 1/2. Площади получающихся на каждом шаге треугольников также образуют бесконечную геометрическую прогрессию со знаменателем 1/2, сумма которой равна площади начального квадрата[5]:8—9.
  • Геометрической является последовательность количества зёрен на клетках в задаче о зёрнах на шахматной доске.
  • 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 — геометрическая прогрессия со знаменателем 2 из тринадцати членов.
  • 50; 25; 12,5; 6,25; 3,125; … — бесконечно убывающая геометрическая прогрессия со знаменателем 1/2.
  • 4; 6; 9 — геометрическая прогрессия из трёх элементов со знаменателем 3/2.
  • , , ,  — стационарная геометрическая прогрессия со знаменателем 1 (и стационарная арифметическая прогрессия с разностью 0).
  • 3; −6; 12; −24; 48; … — знакочередующаяся геометрическая прогрессия со знаменателем −2.
  • 1; −1; 1; −1; 1; … — знакочередующаяся геометрическая прогрессия со знаменателем −1.

Свойства

Свойства знаменателя геометрической прогрессии

Знаменатель геометрической прогрессии можно найти по формулам:

Свойства членов геометрической прогрессии

  • Рекуррентное соотношение для геометрической прогрессии:
  • Формула общего (-го) члена:
  • Обобщённая формула общего члена:
  • , если .
  • , если .

Пусть — соответственно -й, -й, -й члены геометрической прогрессии, где . Тогда для всякой такой тройки выполняется комплементарное свойство геометрической прогрессии, называемое тождеством геометрической прогрессии:

  • Произведение первых членов геометрической прогрессии можно рассчитать по формуле
  • Произведение членов геометрической прогрессии начиная с k-го члена, и заканчивая n-м членом, можно рассчитать по формуле
  • Сумма первых членов геометрической прогрессии
  • Сумма всех членов убывающей прогрессии:
, то при , и
при .

Свойства суммы геометрической прогрессии

где — сумма обратных величин, т. е. .

Свойства произведения геометрической прогрессии

  • , где — сумма обратных величин, т. е. .

См. также

Примечания

  1. Геометрическая прогрессия Архивная копия от 12 октября 2011 на Wayback Machine на mathematics.ru
  2. Это название, хотя и является общепринятым, неудачно, так как бесконечно убывающая геометрическая прогрессия является убывающей, только если и первый член, и знаменатель прогрессии положительны.
  3. Геометрическая прогрессия // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  4. Если геометрическая прогрессия является конечной последовательностью, то её последний член таким свойством не обладает.
  5. Роу С. Геометрические упражнения с куском бумаги. — 2-е изд. — Одесса: Mathesis, 1923. Архивная копия от 19 мая 2017 на Wayback Machine