Колебательный контур: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Не энциклопедично. См. обсуждение.
Строка 23: Строка 23:


Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.
Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Для получения более детальной информации советую взять книгу: Атабеков Г.И."Основы теории цепей", в ней описаны различные виды контуров, принципы их работы и расчеты элементов и параметров.


== Математическое описание процессов ==
== Математическое описание процессов ==

Версия от 20:33, 10 января 2009

Колебательный контурэлектрическая цепь, содержащая параллельно соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания токанапряжения).


Колебательный контур- простейшая система в которой могут происходить свободные электромагнитные колебания

Принцип действия

Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе составляет

Колебательный контур

При соединении конденсатора с катушкой индуктивности в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия колебательного контура . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

, где индуктивность катушки, — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения .

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

В общем, описанные выше процесы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличии от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Математическое описание процессов

Напряжение, возникающее в катушке при изменении протекающего тока равно

.

Аналогично для тока, вызванного изменением напряжения на конденсаторе:

.

Поскольку всё возникающее в катушке напряжение падает на конденсаторе, то , а ток, вызванный конденсатором проходит через катушку, то . Дифференцируя одно из уравнений и подставляя результат в другое, получаем

Это уравнение гармонического осциллятора с круговой частотой (иначе она называется собственной частотой гармонического осциллятора)

Решением такого уравнения является

где — некая постоянная, называемая амплитудой колебаний, — также некоторая постоянная, называемая начальной фазой. И, например, при начальных условиях решение сведётся к

Решение может быть записано также в виде

где и - некоторые константы, которые связаны с амплитудой и фазой следующими отношениями

Комплексное сопротивление (импеданс) колебательного контура

Колебательный контур может быть рассмотрен как двуполюсник. Колебательный контур может быть рассмотрен как параллельное включение двух комплексных сопротивлений ёмкости и индуктивности. Комплексное сопротивление такого двуполюсника можно записать как


где - мнимая единица. Для такого двухполюсника может быть определена т.н. характеристическая частота (она же резонансная частота), когда импеданс колебательного контура стремится к бесконечности (знаменатель дроби стремиться к нулю). Эта частота равна


и совпадает по значению с собственной частотой колебательного контура.

Примечания


См. также

Электрический импеданс
Многополюсник
Электромагнитное излучение

Литература

  • Скрипников Ю. Ф. Колебательный контур — М.: Энергия, 1970 — 128 с.: ил. — (МРБ; Вып. 739)