Графин (вещество): различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
м откат правок Wikisaurus (обс.) к версии InternetArchiveBot Метка: откат |
→История открытия: викификация, уточнение |
||
Строка 7: | Строка 7: | ||
Впервые предположения о существовании графина были высказаны в [[1968 год в науке|1968]] г<ref>{{Статья|автор=Balaban, AT and Rentia, Co C and Ciupitu, E|заглавие=Chemical graphs. 6. Estimation of relative stability of several planar and tridimensional lattices for elementary carbon|год=1968|издание=Revue Roumaine de Chimie|издательство=Editura Academiei Romane|месяц=|число=|том=|номер=2|страницы=|volume=12|issn=}}</ref>. В [[1987 год в науке|1987]] г при помощи [[Квантовая механика|квантовомеханических]] расчётов была показана возможность существования плоских углеродных структур, в которых половина атомов углерода имеет sp-гибридизацию и половина — sp<sup>2</sup>-гибридизацию, и построена первая теоретическая модель структуры графина<ref>{{Статья|ссылка=https://aip.scitation.org/doi/abs/10.1063/1.453405|автор=R. H. Baughman, H. Eckhardt, M. Kertesz|заглавие=Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms|год=1987-12-01|издание=The Journal of Chemical Physics|том=87|выпуск=11|страницы=6687–6699|issn=0021-9606|doi=10.1063/1.453405|archivedate=2019-12-29|archiveurl=https://web.archive.org/web/20191229151942/https://aip.scitation.org/doi/abs/10.1063/1.453405}}</ref>. Также было предсказано, что графин представляет собой широкозонный [[полупроводник]] и имеет [[Нелинейная оптика|нелинейные оптические]] свойства. На активность исследования графина существенно повлияло открытие [[фуллерен]]а<ref>{{Статья|ссылка=https://www.nature.com/articles/369199a0|автор=François Diederich|заглавие=Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds|год=1994-05|язык=en|издание=Nature|том=369|выпуск=6477|страницы=199–207|issn=1476-4687|doi=10.1038/369199a0|archivedate=2020-10-16|archiveurl=https://web.archive.org/web/20201016221943/https://www.nature.com/articles/369199a0}}</ref>. |
Впервые предположения о существовании графина были высказаны в [[1968 год в науке|1968]] г<ref>{{Статья|автор=Balaban, AT and Rentia, Co C and Ciupitu, E|заглавие=Chemical graphs. 6. Estimation of relative stability of several planar and tridimensional lattices for elementary carbon|год=1968|издание=Revue Roumaine de Chimie|издательство=Editura Academiei Romane|месяц=|число=|том=|номер=2|страницы=|volume=12|issn=}}</ref>. В [[1987 год в науке|1987]] г при помощи [[Квантовая механика|квантовомеханических]] расчётов была показана возможность существования плоских углеродных структур, в которых половина атомов углерода имеет sp-гибридизацию и половина — sp<sup>2</sup>-гибридизацию, и построена первая теоретическая модель структуры графина<ref>{{Статья|ссылка=https://aip.scitation.org/doi/abs/10.1063/1.453405|автор=R. H. Baughman, H. Eckhardt, M. Kertesz|заглавие=Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms|год=1987-12-01|издание=The Journal of Chemical Physics|том=87|выпуск=11|страницы=6687–6699|issn=0021-9606|doi=10.1063/1.453405|archivedate=2019-12-29|archiveurl=https://web.archive.org/web/20191229151942/https://aip.scitation.org/doi/abs/10.1063/1.453405}}</ref>. Также было предсказано, что графин представляет собой широкозонный [[полупроводник]] и имеет [[Нелинейная оптика|нелинейные оптические]] свойства. На активность исследования графина существенно повлияло открытие [[фуллерен]]а<ref>{{Статья|ссылка=https://www.nature.com/articles/369199a0|автор=François Diederich|заглавие=Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds|год=1994-05|язык=en|издание=Nature|том=369|выпуск=6477|страницы=199–207|issn=1476-4687|doi=10.1038/369199a0|archivedate=2020-10-16|archiveurl=https://web.archive.org/web/20201016221943/https://www.nature.com/articles/369199a0}}</ref>. |
||
В 2010 г был экспериментально получен графин-2 (также называемый графдиин) при помощи [[in situ]] [[Именные реакции в органической химии|реакции Глазера]]<ref name=":1" />. |
В 2010 г был экспериментально получен графин-2 (также называемый графдиин) при помощи [[in situ]] [[Именные реакции в органической химии#Реакция Глазера|реакции Глазера]]<ref name=":1" />. |
||
== Структура и свойства == |
== Структура и свойства == |
Текущая версия от 13:38, 2 августа 2023
Графин (англ. graphyne) — аллотропная модификация углерода, состоящая из плоских слоёв углерода толщиной в один атом, которые находятся в гибридизациях sp и sp2[1]. Одна из разновидностей графина получена экспериментально[2].
История открытия
[править | править код]Впервые предположения о существовании графина были высказаны в 1968 г[3]. В 1987 г при помощи квантовомеханических расчётов была показана возможность существования плоских углеродных структур, в которых половина атомов углерода имеет sp-гибридизацию и половина — sp2-гибридизацию, и построена первая теоретическая модель структуры графина[4]. Также было предсказано, что графин представляет собой широкозонный полупроводник и имеет нелинейные оптические свойства. На активность исследования графина существенно повлияло открытие фуллерена[5].
В 2010 г был экспериментально получен графин-2 (также называемый графдиин) при помощи in situ реакции Глазера[2].
Структура и свойства
[править | править код]Вследствие наличия sp-гибридизованных связей графин по своей структуре и свойствам значительно отличается от других аллотропных модификаций углерода[6]. Возможны три структуры графина: α-графин, где все три связи sp2-гибридизированных атомов с соседними атомами заменяются на карбиновые цепочки (с тройными связями), β-графин, где заменяются две связи, и γ-графин, где заменяется только одна связь[1][7][8]. Графдиин является наиболее стабильной из не встречающихся в природе аллотропных модификаций углерода, содержащих диацетиленовые связи[9].
При помощи молекулярной динамики было рассчитано, что модуль Юнга в плоскости листа составляет 532.5 ГПа и 629.4 ГПа в зависимости от направления растяжения[10]. На основании теории функционала плотности подвижность электронов составляет 2·105 м2/(В·с) при комнатной температуре, а подвижность дырок на порядок ниже; ширина запрещённой зоны 0.46 эВ.
Экспериментально полученный графин-2 является полупроводником с удельной электропроводностью 2.516·10−4 См/м[2].
Возможные применения
[править | править код]Металлосодержащие нанотрубки из графина могут использоваться для хранения водорода[8], в частности, в области накопления энергии, где проблема хранения водорода является узким местом[11]. Ленты из графина могут применяться в термо- и наноэлектронике[12], причём графин имеет линейный закон дисперсии носителей заряда (аналогично графену), но на основе расчётов с помощью теории функционала плотности в нём предсказана возможность создания ненулевой запрещённой зоны, что представляет большую трудность в случае графена[13]. Также графин может найти применение в разделении газов, что связано с характером пористой структуры графина π-сопряжением связей[6].
Примечания
[править | править код]- ↑ 1 2 Е. А. Беленков, В. В. Мавринский. Трехмерная структура углеродных фаз, состоящих из sp-sp2 гибридизированных атомов // Известия Челябинского Научного Центра Уро Ран. — 2006. — Вып. 2. — С. 13–18. — ISSN 1727-7434. Архивировано 29 декабря 2019 года.
- ↑ 1 2 3 Guoxing Li, Yuliang Li, Huibiao Liu, Yanbing Guo, Yongjun Li. Architecture of graphdiyne nanoscale films (англ.) // Chemical Communications. — 2010-05-21. — Vol. 46, iss. 19. — P. 3256–3258. — ISSN 1364-548X. — doi:10.1039/B922733D. Архивировано 29 декабря 2019 года.
- ↑ Balaban, AT and Rentia, Co C and Ciupitu, E. Chemical graphs. 6. Estimation of relative stability of several planar and tridimensional lattices for elementary carbon // Revue Roumaine de Chimie. — Editura Academiei Romane, 1968. — Vol. 12, № 2.
- ↑ R. H. Baughman, H. Eckhardt, M. Kertesz. Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms // The Journal of Chemical Physics. — 1987-12-01. — Т. 87, вып. 11. — С. 6687–6699. — ISSN 0021-9606. — doi:10.1063/1.453405. Архивировано 29 декабря 2019 года.
- ↑ François Diederich. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds (англ.) // Nature. — 1994-05. — Vol. 369, iss. 6477. — P. 199–207. — ISSN 1476-4687. — doi:10.1038/369199a0. Архивировано 16 октября 2020 года.
- ↑ 1 2 Xin Gao, Huibiao Liu, Dan Wang, Jin Zhang. Graphdiyne: synthesis, properties, and applications (англ.) // Chemical Society Reviews. — 2019-02-04. — Vol. 48, iss. 3. — P. 908–936. — ISSN 1460-4744. — doi:10.1039/C8CS00773J. Архивировано 30 мая 2019 года.
- ↑ Мавринский Виктор Викторович, Беленкова Татьяна Евгеньевна, Чернов Владимир Михайлович, Беленков Евгений Анатольевич. Структура полиморфных разновидностей графиновых слоев // Вестник Челябинского государственного университета. — 2013. — Вып. 25 (316). — ISSN 1994-2796. Архивировано 29 декабря 2019 года.
- ↑ 1 2 Jinlian Lu, Yanhua Guo, Yun Zhang, Yingru Tang, Juexian Cao. A comparative study for Hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers (англ.) // Journal of Solid State Chemistry. — 2015-11. — Vol. 231. — P. 53–57. — doi:10.1016/j.jssc.2015.08.004. Архивировано 29 декабря 2019 года.
- ↑ Michael M. Haley, Stephen C. Brand, Joshua J. Pak. Carbon Networks Based on Dehydrobenzoannulenes: Synthesis of Graphdiyne Substructures (англ.) // Angewandte Chemie International Edition in English. — 1997-05-02. — Vol. 36, iss. 8. — P. 836–838. — ISSN 1521-3773 0570-0833, 1521-3773. — doi:10.1002/anie.199708361.
- ↑ Steven W. Cranford, Markus J. Buehler. Mechanical properties of graphyne // Carbon. — 2011-11-01. — Т. 49, вып. 13. — С. 4111–4121. — ISSN 0008-6223. — doi:10.1016/j.carbon.2011.05.024.
- ↑ K. Srinivasu, Swapan K. Ghosh. Graphyne and Graphdiyne: Promising Materials for Nanoelectronics and Energy Storage Applications // The Journal of Physical Chemistry C. — 2012-03-08. — Т. 116, вып. 9. — С. 5951–5956. — ISSN 1932-7447. — doi:10.1021/jp212181h.
- ↑ Tao Ouyang, Yuanping Chen, Li-Min Liu, Yuee Xie, Xiaolin Wei. Thermal transport in graphyne nanoribbons (англ.) // Physical Review B. — 2012-06-19. — Vol. 85, iss. 23. — P. 235436. — ISSN 1550-235X 1098-0121, 1550-235X. — doi:10.1103/PhysRevB.85.235436.
- ↑ Bog G. Kim, Hyoung Joon Choi. Graphyne: Hexagonal network of carbon with versatile Dirac cones (англ.) // Physical Review B. — 2012-09-21. — Vol. 86, iss. 11. — P. 115435. — ISSN 1550-235X 1098-0121, 1550-235X. — doi:10.1103/PhysRevB.86.115435.