Циркуляция векторного поля: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 1: Строка 1:
'''Циркуля́цией [[Векторное поле|ве́кторного по́ля]]''' называется [[Криволинейный интеграл|криволинейный интеграл]] второго рода, взятый по произвольному замкнутому контуру '''Γ'''. По определению
'''Циркуля́цией [[Векторное поле|ве́кторного по́ля]]''' называется [[Криволинейный интеграл|криволинейный интеграл]] второго рода, взятый по произвольному замкнутому контуру '''Γ'''. По определению


<math>C=\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{r}}=\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy+F_{z}dz}</math>
<math>C=\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{l}}=\oint\limits_{\Gamma }{F_{x}dx+F_{y}dy+F_{z}dz}</math>


где <math>\mathbf{F}=\{F_{x},F_{y},F_{z}\}</math> — векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур '''Γ''',
где <math>\mathbf{F}=\{F_{x},F_{y},F_{z}\}</math> — векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур '''Γ''',
<math>d\mathbf{r}=\{dx,dy,dz\}</math> — бесконечно малое приращение радиус-вектора <math>\mathbf{r}</math> вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру.
<math>d\mathbf{l}=\{dx,dy,dz\}</math> — бесконечно малое приращение радиус-вектора <math>\mathbf{l}</math> вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру.


== Свойства циркуляции ==
== Свойства циркуляции ==
Строка 20: Строка 20:
Циркуляция вектора '''F''' по произвольному контуру '''Г''' равна [[Поток_векторного_поля|потоку вектора]] <math>\operatorname{rot}\mathbf{F}</math> через произвольную поверхность '''S''', ограниченную данным контуром.
Циркуляция вектора '''F''' по произвольному контуру '''Г''' равна [[Поток_векторного_поля|потоку вектора]] <math>\operatorname{rot}\mathbf{F}</math> через произвольную поверхность '''S''', ограниченную данным контуром.


<math>\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{r}=\iint\limits_{S}{(\operatorname{rot}}}\mathbf{F},\mathbf{n})dS</math>
<math>\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{l}=\iint\limits_{S}{(\operatorname{rot}}}\mathbf{F},\mathbf{n})dS</math>


где
где
Строка 42: Строка 42:
Если '''F''' — некоторое силовое поле, тогда циркуляция этого поля по некоторому произвольному контуру '''Γ''' есть работа этого поля при перемещении точки вдоль контура '''Г'''. Отсюда непосредственно следует критерий [[Потенциальное_поле|потенциальности поля]]: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль.
Если '''F''' — некоторое силовое поле, тогда циркуляция этого поля по некоторому произвольному контуру '''Γ''' есть работа этого поля при перемещении точки вдоль контура '''Г'''. Отсюда непосредственно следует критерий [[Потенциальное_поле|потенциальности поля]]: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль.


<math>\forall \Gamma \subset D:\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{r}}=0\Leftrightarrow \forall \mathbf{F}\in D:\operatorname{rot}\mathbf{F}=\mathbf{0}</math>
<math>\forall \Gamma \subset D:\oint\limits_{\Gamma }{\mathbf{F}d\mathbf{l}}=0\Leftrightarrow \forall \mathbf{F}\in D:\operatorname{rot}\mathbf{F}=\mathbf{0}</math>


== Историческая справка ==
== Историческая справка ==

Версия от 16:05, 20 января 2009

Циркуля́цией ве́кторного по́ля называется криволинейный интеграл второго рода, взятый по произвольному замкнутому контуру Γ. По определению

где  — векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур Γ,  — бесконечно малое приращение радиус-вектора вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру.

Свойства циркуляции

Свойство аддитивности циркуляции: циркуляция по контуру есть сумма циркуляций по контурам и , то есть

Аддитивность

Циркуляция по контуру, ограничивающему несколько смежных поверхностей, равна сумме циркуляций по контурам, ограничивающим каждую поверхность в отдельности, то есть


Формула Стокса

Циркуляция вектора F по произвольному контуру Г равна потоку вектора через произвольную поверхность S, ограниченную данным контуром.

где

 — Ротор (вихрь) вектора F.

В случае, если контур плоский, например лежит в плоскости OXY, справедлива формула Грина

где  — плоскость, ограничиваемая контуром (внутренность контура).

Физическая интерпретация

Физическая интерпретация циркуляции: Работа поля по замкнутому контуру

Если F — некоторое силовое поле, тогда циркуляция этого поля по некоторому произвольному контуру Γ есть работа этого поля при перемещении точки вдоль контура Г. Отсюда непосредственно следует критерий потенциальности поля: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль.

Историческая справка

Термин «циркуляция» был первоначально введен в гидродинамике для расчета циркуляции жидкости по замкнутому каналу. Рассмотрим течение идеальной несжимаемой жидкости. Выберем произвольный контур Γ. Мысленно представим, что мы заморозили всю жидкость в объеме, за исключением тонкого канала, включающего в себя контур Γ. Тогда, в зависимости от первоначального характера течения жидкости, она будет либо неподвижной в канале, либо двигаться вдоль контура (циркулировать). В качестве характеристики такого движения берут величину равную произведению скорости движения жидкости по каналу на длину контура l.

Так как при затвердевании стенок канала нормальная к контуру компонента скорости будет погашена, жидкость по каналу будет двигаться с тангенциальной составляющей исходной скорости . Тогда циркуляцию можно представить в виде

где dl — элемент длины контура.

Позже понятие «циркуляция» было распространено на любые поля, даже такие, в которых «циркулировать» нечему.

Литература

  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т.3. М.: «Наука», 1960.
  • Савельев И. В. Курс общей физики. Т2. М.: Астрель • АСТ, 2004.