Последовательность: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Литература: некорректная категория
Спасено источников — 2, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.9.5
Строка 18: Строка 18:
Пусть задано некоторое множество <math>X</math> элементов произвольной природы.
Пусть задано некоторое множество <math>X</math> элементов произвольной природы.


Всякое [[отображение]] <math>f\colon\mathbb{N}\to X</math> [[Натуральное число|множества натуральных чисел]] <math>\mathbb{N}</math> в заданное множество <math>X</math> называется '''последовательностью'''<ref>{{книга |часть=Последовательность |заглавие=Математическая энциклопедия (в 5 томах) |место=М. |том=4 |год=1984 |ссылка=http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t4.djvu |издательство=[[Большая Российская энциклопедия (издательство)|Советская Энциклопедия]] |страницы=506—507 }}</ref> (элементов множества <math>X</math>).
Всякое [[отображение]] <math>f\colon\mathbb{N}\to X</math> [[Натуральное число|множества натуральных чисел]] <math>\mathbb{N}</math> в заданное множество <math>X</math> называется '''последовательностью'''<ref>{{книга |часть=Последовательность |заглавие=Математическая энциклопедия (в 5 томах) |место=М. |том=4 |год=1984 |ссылка=http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t4.djvu |издательство=[[Большая Российская энциклопедия (издательство)|Советская Энциклопедия]] |страницы=506—507 |archive-date=2022-01-21 |archive-url=https://web.archive.org/web/20220121054322/http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t4.djvu }}</ref> (элементов множества <math>X</math>).


==== Обозначения ====
==== Обозначения ====
Строка 52: Строка 52:
[[Image:Euclid flowchart.svg|thumb|right| Блок-схема последовательности шагов (алгоритм Евклида) для вычисления [[Наибольший общий делитель|наибольшего общего делителя]] (НОД) двух чисел a и b в точках с именами A и B. Алгоритм выполняется последовательным вычитанием в двух циклах: ЕСЛИ тест B ≥ A дает «да» или "истина" (точнее, число b в позиции B больше или равно числу a в позиции A) ТОГДА алгоритм определяет B ← B - A (что означает, что число b - a заменяет старое число b). Точно так же ЕСЛИ A> B, ТОГДА A ← A - B. Процесс завершается, когда (содержимое) B равно 0, что дает НОД в A. (Алгоритм, полученный из Scott 2009: 13; символы и стиль рисования из Tausworthe 1977).]]
[[Image:Euclid flowchart.svg|thumb|right| Блок-схема последовательности шагов (алгоритм Евклида) для вычисления [[Наибольший общий делитель|наибольшего общего делителя]] (НОД) двух чисел a и b в точках с именами A и B. Алгоритм выполняется последовательным вычитанием в двух циклах: ЕСЛИ тест B ≥ A дает «да» или "истина" (точнее, число b в позиции B больше или равно числу a в позиции A) ТОГДА алгоритм определяет B ← B - A (что означает, что число b - a заменяет старое число b). Точно так же ЕСЛИ A> B, ТОГДА A ← A - B. Процесс завершается, когда (содержимое) B равно 0, что дает НОД в A. (Алгоритм, полученный из Scott 2009: 13; символы и стиль рисования из Tausworthe 1977).]]
{{Основная статья|алгоритм}}
{{Основная статья|алгоритм}}
«Алгоритм — это строгая и логичная последовательность действий для решения какой-либо задачи (математической, информационной и т. п.).»<ref>{{Книга|заглавие=Толковый словарь|ответственный=под ред. Д. В. Дмитриева|место=|издательство=АСТ, Lingua, Астрель|год=2003|страниц=1584|isbn=5-17-016483-1, 5-271-05995-2}}</ref><ref>{{Книга|заглавие=основы алгоритмизации и программирования|автор=И.Г.Семакин, А.П.Шестаков|ссылка=http://college-balabanovo.ru/Student/Bibl/Inf/OsnAlgorm.pdf|место=Москва|издательство=Издательский центр "Академия"|год=2016|страницы=10|страниц=303|isbn=978-5-4468-3155-5}} {{Wayback|url=http://college-balabanovo.ru/Student/Bibl/Inf/OsnAlgorm.pdf |date=20220121033257 }}</ref>
«Алгоритм — это строгая и логичная последовательность действий для решения какой-либо задачи (математической, информационной и т. п.).»<ref>{{Книга|заглавие=Толковый словарь|ответственный=под ред. Д. В. Дмитриева|место=|издательство=АСТ, Lingua, Астрель|год=2003|страниц=1584|isbn=5-17-016483-1, 5-271-05995-2}}</ref><ref>{{Книга|заглавие=основы алгоритмизации и программирования|автор=И.Г.Семакин, А.П.Шестаков|ссылка=http://college-balabanovo.ru/Student/Bibl/Inf/OsnAlgorm.pdf|место=Москва|издательство=Издательский центр "Академия"|год=2016|страницы=10|страниц=303|isbn=978-5-4468-3155-5|archive-date=2022-01-21|archive-url=https://web.archive.org/web/20220121033257/http://college-balabanovo.ru/Student/Bibl/Inf/OsnAlgorm.pdf}}</ref>


== Последовательности в математике ==
== Последовательности в математике ==

Версия от 19:13, 24 октября 2023

В математике последовательность — это пронумерованный набор каких-либо объектов, среди которых допускаются повторения, причём порядок объектов имеет значение. Нумерация чаще всего происходит натуральными числами. Более общие случаи см. в разделе Вариации и обобщения.

В данной статье последовательность подразумевается бесконечной; случаи конечной последовательности оговариваются особо.

Примеры

Примеры числовой последовательности:

  • Примером конечной последовательности может служить последовательность домов на улице.
  • Многочлен от одной переменной можно рассматривать как конечную последовательность его коэффициентов, или бесконечную — в предположении при .
  • Последовательность простых чисел является одной из наиболее известных нетривиальных бесконечных числовых последовательностей.
  • Каждому действительному числу может быть сопоставлена собственная последовательность, называемая цепной дробью — причём для рациональных чисел она всегда конечна, для алгебраических иррациональных чисел бесконечна (для квадратичных иррациональностейпериодична), а для трансцендентных чисел бесконечна и не периодична, хотя отдельные числа и могут встречаться в ней бесконечное число раз. Например, цепная дробь для числа конечна и равна , а цепная дробь числа уже бесконечна, не периодична и выглядит следующим образом: .
  • В геометрии часто рассматривается последовательность правильных многоугольников, форма которых зависит только от количества вершин.
  • Последовательность может состоять даже из множеств — к примеру, можно составить последовательность, в которой на -ой позиции находится множество всех многочленов степени с целыми коэффициентами от одной переменной.

Числовая последовательность

Строгое определение

Пусть задано некоторое множество элементов произвольной природы.

Всякое отображение множества натуральных чисел в заданное множество называется последовательностью[1] (элементов множества ).

Обозначения

Последовательности вида

принято компактно записывать при помощи круглых скобок:

или .

Иногда используются фигурные скобки:

.

Конечные последовательности могут записываться в следующем виде:

.

Также последовательность может быть записана как

,

если функция была определена ранее, или же её обозначение может быть заменено на саму функцию. Например, при последовательность можно записать в виде .

Связанные определения

  • Образ натурального числа , а именно элемент , называется -ым членом последовательности, а порядковый номер члена последовательности — его индексом.
  • Подмножество множества , которое образовано элементами последовательности, называется носителем последовательности: пока индекс пробегает множество натуральных чисел, точка, «изображающая» члены последовательности, «перемещается» по носителю.
  • Подпоследовательностью последовательности называется зависящая от последовательность , где — возрастающая последовательность натуральных чисел. Подпоследовательность можно получить из изначальной последовательности, выкинув из неё некоторые члены.

Замечания

  • Любое отображение множества в себя также является последовательностью.
  • Последовательность элементов множества может быть рассмотрена, как упорядоченное подмножество , изоморфное множеству натуральных чисел.

Способы задания числовых последовательностей

Жёлтая ромашковая головка, показывающая расположение в 21 (синяя) и 13 (аква) спиралей. Такие схемы, включающие последовательности чисел Фибоначчи, встречаются у самых разных растений
  1. Аналитический, где формула определяет последовательность n-го члена, например:
  2. Рекуррентный, Например, числа Фибоначчи, где любой член последовательности выражается через предшествующие:
  3. Словесный; Например, для любой бесконечной десятичной дроби можно построить последовательность её десятичных приближений по недостатку или избытку, округляя в каждой итерации дробь в меньшую или большую сторону.

Последовательность действий

Блок-схема последовательности шагов (алгоритм Евклида) для вычисления наибольшего общего делителя (НОД) двух чисел a и b в точках с именами A и B. Алгоритм выполняется последовательным вычитанием в двух циклах: ЕСЛИ тест B ≥ A дает «да» или "истина" (точнее, число b в позиции B больше или равно числу a в позиции A) ТОГДА алгоритм определяет B ← B - A (что означает, что число b - a заменяет старое число b). Точно так же ЕСЛИ A> B, ТОГДА A ← A - B. Процесс завершается, когда (содержимое) B равно 0, что дает НОД в A. (Алгоритм, полученный из Scott 2009: 13; символы и стиль рисования из Tausworthe 1977).

«Алгоритм — это строгая и логичная последовательность действий для решения какой-либо задачи (математической, информационной и т. п.).»[3][4]

Последовательности в математике

В математике рассматривают различные типы последовательностей:

Практически важные задачи, возникающие при изучении последовательностей:

  • Выяснение вопроса, конечна данная последовательность или бесконечна. Например, на 2020 год известно 51 простое число Мерсенна, но не доказано, что больше таких чисел нет.
  • Поиск закономерностей среди членов последовательности.
  • Поиск аналитической формулы, которая может служить хорошим приближением для -го члена последовательности. Например, для -го простого числа неплохое приближение даёт формула: (существуют и более точные).
  • Прогноз будущих состояний, в первую очередь выяснение вопроса, сходится ли данная последовательность к конечному или бесконечному пределу числовому или не числовому, в зависимости от типа множества

Вариации и обобщения

См. также

Примечания

  1. Последовательность // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1984. — Т. 4. — С. 506—507. Архивировано 21 января 2022 года.
  2. Гусев В.А., Мордкович А.Г. Математика: справочные материалы. — Москва: Просвещение, 1988. — 416 с.
  3. Толковый словарь / под ред. Д. В. Дмитриева. — АСТ, Lingua, Астрель, 2003. — 1584 с. — ISBN 5-17-016483-1, 5-271-05995-2.
  4. И.Г.Семакин, А.П.Шестаков. основы алгоритмизации и программирования. — Москва: Издательский центр "Академия", 2016. — С. 10. — 303 с. — ISBN 978-5-4468-3155-5. Архивировано 21 января 2022 года.

Литература