1. '''Многочленом''' Тейлора функции <math>f(x)</math> [[Вещественное число|вещественной]] переменной <math>x</math>, [[Дифференцируемая функция|дифференцируемой]] <math>k</math> раз в точке <math>a</math>, называется конечная сумма
1. '''Многочленом''' Тейлора функции <math>f(x)</math> [[Вещественное число|вещественной]] переменной <math>x</math>, [[Дифференцируемая функция|дифференцируемой]] <math>k</math> раз в точке <math>a</math>, называется конечная сумма
используемая в [[Приближённые вычисления|приближённых вычислениях]], как обобщение следствия [[Формула конечных приращений|теоремы Лагранжа о среднем значении]] дифференцируемой функции:
используемая в [[Приближённые вычисления|приближённых вычислениях]], как обобщение следствия [[Формула конечных приращений|теоремы Лагранжа о среднем значении]] дифференцируемой функции:
Как указано ниже в примерах, наличия бесконечной дифференцируемости функции в окрестности точки не достаточно, чтобы ряд Тейлора сходился к самой функции где-либо, кроме самой точки .
3. Рядом Тейлора в точке функции комплексной переменной ,
удовлетворяющей в некоторой окрестности точки условиям Коши — Римана,
называется степенной ряд
.
В отличие от вещественного случая, из условий следует, что найдётся такое значение радиуса , что в ряд сходится к функции .
1. Функция вещественной переменной называется аналитической в точке , если существуют такой радиус и такие коэффициенты , , что может быть представлена в виде сходящегося на интервале степенного ряда:
,
то есть .
Функция называется аналитической на промежутке (на множестве), если она является аналитической в каждой точке этого промежутка (множества).
2. Степенной ряд на любом компактном подмножестве области сходимости допускает почленное дифференцирование любое количество раз.
Если в -ю производную функции подставить , то получится .
Таким образом, для аналитической в точке функции для некоторого всюду в является верным представление .
Следствие. Функция вещественной переменной является аналитической в точке тогда и только тогда, когда она равна своему ряду Тейлора с параметром на некотором открытом интервале, содержащем точку .
3. Вопрос: будет ли для произвольной бесконечно дифференцируемой в точке функции вещественного переменного её ряд Тейлора сходиться к всюду на каком-нибудь интервале , то есть представима ли этим рядом?
Ответ: нет.
Существуют бесконечно дифференцируемые функции вещественной переменной, ряд Тейлора которых сходится, но при этом отличается от функции в любой окрестности
.
Примеры. Функции вещественной переменной ,
,
являются бесконечно дифференцируемыми в точке , причём все эти производные равны нулю.
Следовательно, ряды Тейлора всех этих функций с параметром тождественно равны нулю.
Однако, для любого в окрестности точки найдутся точки,
в которых функции отличны от .
Таким образом, эти функции не являются в точке аналитическими.
Функция , является аналитической функцией комплексной переменной
для всех .
Для очевидно, что
.
Функция для — это «исправленная» функция
, ,
дополненная пределами слева
и справа в точке .
Найдём производную функции в точке .
По определению:
.
Поскольку для выполняется
,
то
докажем, что для произвольного верно .
Применение правила Лопиталя непосредственно к частям
не приводит к результату.
Выполним замену переменной: :
.
Пусть .
Применяя правило Лопиталя раз, в числителе получим либо (при ) константу , либо (при ) бесконечно малую :
.
Таким образом,
.
Найдём (для ) несколько начальных
производных функции :
И так далее. Во всех случаях, очевидно,
получается произведение
на сумму целых отрицательных степеней
.
Конечная сумма
бесконечно малых является бесконечно малой.
Таким образом,
.
Вычисляя последовательно по определению (как выше) производные в точке ,
обнаруживаем, что все производные в
точке равны нулю.
Примером гладкой функции, не являющейся аналитической ни в одной точке своей области определения, служит функция Фабиуса.
Область сходимости ряда Тейлора
Ряд Тейлора, являясь степенным рядом, имеет в качестве области сходимости круг (с центром в точке ) для случая комплексной переменной
и интервал (с центром в точке ) — для случая вещественной переменной.
1. Например, функция может быть разложена в ряд Тейлора следующим образом: (это известная формула суммы бесконечной убывающей геометрической прогрессии). Однако если функция определена для всех действительных чисел, кроме точки , то ряд сходится только при условии .
2. Радиус сходимости ряда Тейлора можно определить, например, по формуле Даламбера:
.
3. Рассмотрим для примера экспоненциальную функцию . Поскольку любая производная экспоненциальной функции равна самой функции в любой точке, то радиус сходимости экспоненциальной функции равен . Значит, ряд Тейлора экспоненциальной функции сходится на всей оси для любого параметра .
4. От параметра — точки разложения ряда Тейлора — зависит область его сходимости.
Например, разложим в общем случае (для произвольного ) в ряд Тейлора функцию : .
Можно доказать с помощью формулы суммы геометрической прогрессии, что данный ряд, как функция аргумента , при любых значениях (кроме ) имеет один и тот же вид.
Действительно,
.
Область сходимости ряда может быть задана неравенством . И теперь эта область зависит от . Например, для ряд сходится при . Для ряд сходится при .
Формула Тейлора
Предположим, что функция имеет все производные до -го порядка включительно в некотором промежутке, содержащем точку . Найдем многочлен степени не выше , значение которого в точке равняется значению функции в этой точке, а значения его производных до -го порядка включительно в точке равняются значениям соответствующих производных от функции в этой точке.
Достаточно легко доказать, что такой многочлен имеет вид , то есть это -я частичная сумма ряда Тейлора функции . Разница между функцией и многочленом называется остаточным членом и обозначается . Формула называется формулой Тейлора[4]. Остаточный член дифференцируем раз в рассматриваемой окрестности точки . Формула Тейлора используется при доказательстве большого числа теорем в дифференциальном исчислении.
Говоря нестрого, формула Тейлора показывает поведение функции в окрестности некоторой точки.
Теорема:
Если функция имеет производную на отрезке с концами и , то для произвольного положительного числа найдётся точка , лежащая между и , такая, что
Это формула Тейлора с остаточным членом в общей форме (форма Шлёмильха — Роша).
Продифференцируем по обе части формулы Тейлора раз:
(Отсюда, в частности, видно, что — это свойство остаточного члена в любой форме.)
По теореме Лагранжа (поскольку соответствует условиям теоремы) существует такая точка между и (то есть не равно ни , ни ), что . Отсюда . Продифференцируем последнее тождество ещё раз по и получим .
Пусть остаточный член задан в виде . Тогда, во-первых, он и все его производные равны нулю в точке , во-вторых, . В конце ещё можно сделать замену переменной: . Формула выведена.
Пусть функция имеет производную в некоторой окрестности точки и -ю производную в самой точке , тогда:
В асимптотической форме (форме Пеано, локальной форме):
Вывод
Поскольку , то предел отношения при , стремящемся к , может быть найден по правилу Лопиталя:
Поскольку предел равен нулю, это значит, что остаточный член является бесконечно малой функцией более высокого порядка, чем , при . А это и есть определение о-малого.
Предположим, что некоторую функцию нужно разложить в ряд Тейлора в некоторой точке . Для этого предварительно нужно убедиться, что функция является аналитической (то есть буквально разложимой) в этой точке. В противном случае получится не разложение функции в ряд Тейлора, а просто ряд Тейлора, который не равен своей функции. Причем, как можно убедиться на примере функции Коши, и функция может быть сколько угодно раз дифференцируемой в точке , и её ряд Тейлора с параметром может быть сходящимся, но при этом ряд Тейлора может быть не равен своей функции.
Во-первых, необходимым условием аналитичности функции является сходимость ряда Тейлора в некоторой непрерывной области. Действительно, если ряд Тейлора сходится всего в одной точке, то это точка , потому что в ней ряд Тейлора сходится всегда. Но тогда ряд Тейлора равен функции только в этой единственной точке, а значит, данная функция не будет аналитической.
Во-вторых, по формуле Тейлора в ряд Тейлора с остаточным членом может быть разложена любая (а не только аналитическая) функция, бесконечно дифференцируемая в окрестности, содержащей точку . Пусть ряд Тейлора с параметром такой функции сходится в этой окрестности. Если существует предел каждой из двух последовательностей, то предел суммы этих последовательностей равен сумме их пределов. Тогда для всех из окрестности по формуле Тейлора можно записать , где — ряд Тейлора.
Очевидно, что функция является аналитической в точке тогда и только тогда, если в указанной окрестности точки существует непрерывная область такая, что для всех остаточный член её разложения по формуле Тейлора стремится к нулю с ростом : .
В качестве примера рассмотрим экспоненциальную функцию . Её ряд Тейлора сходится на всей оси для любых параметров . Докажем теперь, что эта функция является аналитической во всех точках .
Остаточный член разложения этой функции в форме Лагранжа имеет вид , где — некоторое число, заключенное между и (не произвольное, но и не известное). Тогда, очевидно,
Здесь используется, что на фиксированном промежутке экспонента ограничена некоторым числом
Причем, как видно, предел остаточного члена равен нулю для любых и .
Пусть функция имеет непрерывные производные до -го порядка включительно в некоторой окрестности точки .
Введём дифференциальный оператор
.
Тогда разложение (формула Тейлора) функции по степеням для в окрестности точки будет иметь вид
где — остаточный член в форме Лагранжа:
Следует иметь в виду, что операторы и
в действуют только на функцию , но не на и/или .
Аналогичным образом формула строится для функций любого числа переменных, меняется только число слагаемых в операторе .
В случае функции одной переменной .
Формула Тейлора многих переменных
Для получения формулы Тейлора функции переменных , которая в некоторой окрестности точки имеет непрерывные производные до -го порядка включительно, введём дифференциальный оператор
Тогда разложение (формула Тейлора) функции по степеням в окрестности точки имеет вид
где — остаточный член порядка .
Для функции переменных, бесконечно дифференцируемой в некоторой окрестности точки , ряд Тейлора имеет вид:
.
В другой форме ряд Тейлора можно записать таким образом:
.
Пример разложения в ряд Маклорена функции трёх переменных
Найдём выражение для разложения в ряд Тейлора функции трёх переменных , и в окрестности точки до второго порядка малости. Оператор будет иметь вид
Разложение в ряд Тейлора запишется в виде
Учитывая, что
получим
Например, при ,
Примечания
↑Taylor, Brook, Methodus Incrementorum Directa et Inversa [Direct and Reverse Methods of Incrementation] (London, 1715), pages 21-23 (Proposition VII, Theorem 3, Corollary 2). Translated into English in D. J. Struik, A Source Book in Mathematics 1200—1800 (Cambridge, Massachusetts: Harvard University Press, 1969), pages 329—332.
↑Gupta R. C. The Madhava-Gregory series, Math. Education 7 (1973), B67-B70.
↑Запорожец Г. И. «Руководство к решению задач по математическому анализу» — С. 371
↑Н.С. Пискунов. Дифференциальное и интегральное исчисления. — Мифрил, 1996. — С. Том 1, глава 4, параграф 6.
↑Н.С. Пискунов. Дифференциальное и интегральное исчисления для втузов. — тринадцатое. — МОСКВА "НАУКА", 1985. — С. Том 2, глава 16, параграф 16.
↑Цукер Р.Тригонометрические функции // Справочник по специальным функциям с формулами, графиками и таблицами / Под ред. М. Абрамовица и И. Стиган; пер. с англ. под ред. В. А. Диткина и Л. Н. Карамзиной. — М.: Наука, 1979. — С. 37—43. — 832 с. — 50 000 экз.
↑Цукер Р.Обратные тригонометрические функции // Справочник по специальным функциям с формулами, графиками и таблицами / Под ред. М. Абрамовица и И. Стиган; пер. с англ. под ред. В. А. Диткина и Л. Н. Карамзиной. — М.: Наука, 1979. — С. 44—47. — 832 с. — 50 000 экз.
↑При значении x, близком к 1, эта расчётная формула сходится медленно, т.е. даёт большую погрешность при приближении функции суммой первых нескольких членов ряда. Поэтому можно воспользоваться формулой где
↑Цукер Р.Гиперболические функции // Справочник по специальным функциям с формулами, графиками и таблицами / Под ред. М. Абрамовица и И. Стиган; пер. с англ. под ред. В. А. Диткина и Л. Н. Карамзиной. — М.: Наука, 1979. — С. 48—49. — 832 с. — 50 000 экз.
↑Цукер Р.Обратные гиперболические функции // Справочник по специальным функциям с формулами, графиками и таблицами / Под ред. М. Абрамовица и И. Стиган; пер. с англ. под ред. В. А. Диткина и Л. Н. Карамзиной. — М.: Наука, 1979. — С. 50—53. — 832 с. — 50 000 экз.
Литература
Ильин В. А., Садовничий В. А., Сендов Б. Х. Математический анализ, ч. 1, изд. 3, ред. А. Н. Тихонов. М.: Проспект, 2004.
Камынин Л. И. Математический анализ. Т. 1, 2. — 2001.
Груздов А. В., Березин С. В., Березин А. В., Березин П. В.Сборная Тейлора и Маклорена, Систематизация степенных рядов функций и операций. - 2023.