Серебряное сечение: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Спасено источников — 1, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.9.5
мНет описания правки
Метки: через визуальный редактор с мобильного устройства из мобильной версии
Строка 19: Строка 19:
# Две величины находятся в «серебряном сечении», если [[Соотношение|отношение]] суммы меньшей и удвоенной большей величины к большей равно отношению большей величины к меньшей:
# Две величины находятся в «серебряном сечении», если [[Соотношение|отношение]] суммы меньшей и удвоенной большей величины к большей равно отношению большей величины к меньшей:
: <math> ~~~~~\frac{b+2a}{a}=\frac{a}{b}~ </math>, где a - большее число, b - меньшее число.
: <math> ~~~~~\frac{b+2a}{a}=\frac{a}{b}~ </math>, где a - большее число, b - меньшее число.
# Серебряное сечение — [[Иррациональное число|иррациональное]] (но [[Алгебраическое число|алгебраическое]]) число, равное <math>1+\sqrt{2}</math> или приблизительно 2,4142135623. Для использования в процентном делении используется отношение, близкое к этому числу, — '''71/29'''.
# Серебряное сечение — [[Иррациональное число|иррациональное]] (но [[Алгебраическое число|алгебраическое]]) число, равное <math>1+\sqrt{2}</math> или приблизительно 2,4142135623. Для использования в процентном делении используется отношение, близкое к этому числу, — '''70/29'''.


В последнее время некоторые художники и архитекторы считают это отношение «красивым». Возможно, они опираются на теорию {{Не переведено|Динамический прямоугольник|динамических прямоугольников|en|Dynamic rectangle}} {{нп1|Джей Хембридж|Джея Хембриджа|en|Jay Hambidge}}. Математики исследовали серебряное соотношение со времён [[Математика в Древней Греции|древнегреческой науки]] (хотя такое название, возможно, появилось только недавно), так как оно связано с [[Квадратный корень из 2|квадратным корнем из 2]], его [[Подходящая дробь|подходящими дробями]], [[Квадратное треугольное число|квадратными треугольными числами]], [[числа Пелля|числами Пелля]], [[восьмиугольник]]ом и др.
В последнее время некоторые художники и архитекторы считают это отношение «красивым». Возможно, они опираются на теорию {{Не переведено|Динамический прямоугольник|динамических прямоугольников|en|Dynamic rectangle}} {{нп1|Джей Хембридж|Джея Хембриджа|en|Jay Hambidge}}. Математики исследовали серебряное соотношение со времён [[Математика в Древней Греции|древнегреческой науки]] (хотя такое название, возможно, появилось только недавно), так как оно связано с [[Квадратный корень из 2|квадратным корнем из 2]], его [[Подходящая дробь|подходящими дробями]], [[Квадратное треугольное число|квадратными треугольными числами]], [[числа Пелля|числами Пелля]], [[восьмиугольник]]ом и др.

Версия от 10:28, 13 апреля 2024

Иррациональные числа
ζ(3) — ρ — 2 — 3 — 5ln 2φ,Φ — ψα,δ — eeπ и π
Система счисления Оценка числа δs
Двоичная 10.0110101000001001111…
Десятичная 2.4142135623730950488…
Шестнадцатеричная 2.6A09E667F3BCC908B2F…
Непрерывная дробь

Сере́бряное сече́ние — математическая константа, выражающая некоторое геометрическое соотношение, выделяемое эстетически. В отличие от золотого сечения, по аллюзии с которым оно названо, серебряное сечение не имеет единого определения. Наиболее последовательным является следующее:

  1. Две величины находятся в «серебряном сечении», если отношение суммы меньшей и удвоенной большей величины к большей равно отношению большей величины к меньшей:
, где a - большее число, b - меньшее число.
  1. Серебряное сечение — иррациональное (но алгебраическое) число, равное или приблизительно 2,4142135623. Для использования в процентном делении используется отношение, близкое к этому числу, — 70/29.

В последнее время некоторые художники и архитекторы считают это отношение «красивым». Возможно, они опираются на теорию динамических прямоугольников[англ.] Джея Хембриджа[англ.]. Математики исследовали серебряное соотношение со времён древнегреческой науки (хотя такое название, возможно, появилось только недавно), так как оно связано с квадратным корнем из 2, его подходящими дробями, квадратными треугольными числами, числами Пелля, восьмиугольником и др.

Обозначим далее серебряное сечение через (общепринятого обозначения нет). Соотношение, описанное в определении выше, записывается алгебраически так:

Это уравнение имеет единственный положительный корень.

Геометрическое доказательство, что корень из двух — иррационален .

Формулы

  • . Это следует из
  •  — в виде цепной дроби:

подходящие дроби этой непрерывной дроби (2/1, 5/2, 12/5, 29/12, 70/29, …) являются отношениями последовательных чисел Пелля. Эти дроби дают хорошие рациональные аппроксимации серебряного сечения, аналогично тому, что золотое сечение приближается отношениями последовательных чисел Фибоначчи.

В виде бесконечных вложенных радикалов:

  • .
  • .

Другие определения

Встречаются и другие определения серебряного сечения.

Например, отталкиваясь от определения золотого сечения через цепную дробь, серебряными называют любые цепные дроби, в которых знаменатели постоянны:

.

Литература

  • Аракелян Г. Б. Числа и величины в современной физике. Ереван: Изд. АН, 1989, 300 с. — С. 90-95, 252.

Примечания

  1. The Square Root of Two, to 5 million digits. Дата обращения: 16 февраля 2015. Архивировано 24 сентября 2015 года.

Ссылки