Параллелограмм: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Bezik (обсуждение | вклад) оформление, стандартизация, внос См. также |
Спасено источников — 1, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.9.5 |
||
Строка 34: | Строка 34: | ||
Площадь параллелограмма равна произведению его основания на [[Высота (геометрия)|высоту]]: <math>S = bh</math>, где <math>b</math> — сторона, <math>h</math> — высота, проведённая к этой стороне. Также площадь параллелограмма может быть вычислена как произведение длин его смежных сторон <math>a</math> и <math>b</math> и [[синус]]а угла <math>\alpha</math> между ними: <math>S = ab\sin \alpha</math>. |
Площадь параллелограмма равна произведению его основания на [[Высота (геометрия)|высоту]]: <math>S = bh</math>, где <math>b</math> — сторона, <math>h</math> — высота, проведённая к этой стороне. Также площадь параллелограмма может быть вычислена как произведение длин его смежных сторон <math>a</math> и <math>b</math> и [[синус]]а угла <math>\alpha</math> между ними: <math>S = ab\sin \alpha</math>. |
||
Ещё один способ определения площади параллелограмма — через длины смежных сторон <math>a</math> и <math>b</math> и длину любой из диагоналей <math>d</math> по [[Формула Герона|формуле Герона]] как сумма площадей двух равных примыкающих треугольников<ref> |
Ещё один способ определения площади параллелограмма — через длины смежных сторон <math>a</math> и <math>b</math> и длину любой из диагоналей <math>d</math> по [[Формула Герона|формуле Герона]] как сумма площадей двух равных примыкающих треугольников<ref>{{Cite web |url=https://resh.edu.ru/subject/lesson/2012/main/ |title=Геометрия, 8 класс. Урок 14. Формула Герона |access-date=2023-10-26 |archive-date=2022-04-03 |archive-url=https://web.archive.org/web/20220403054009/https://resh.edu.ru/subject/lesson/2012/main/ |url-status=live }}</ref>: |
||
: <math>S=2 \cdot \sqrt{p(p-a)(p-b)(p-d)}</math>, |
: <math>S=2 \cdot \sqrt{p(p-a)(p-b)(p-d)}</math>, |
||
где <math>p=(a+b+d)/2</math>. |
где <math>p=(a+b+d)/2</math>. |
Версия от 21:39, 26 июля 2024
Параллелогра́мм (др.-греч. παραλληλόγραμμον ← παράλληλος — параллельный + γραμμή — линия) — четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых[1]. Существуют другие варианты определения .
Частными случаями параллелограмма являются прямоугольник (все углы прямые), ромб (все стороны равны) и квадрат (прямоугольник и ромб одновременно)[1]. Параллелограмм, не являющийся прямоугольником или ромбом называют ромбоидом (при этом в литературе первой половины XX века термином «ромбоид» иногда именовался дельтоид).
Свойства
Противолежащие стороны параллелограмма и противолежащие углы параллелограмма — равны. Сумма углов, прилежащих к одной (любой) стороне, равна 180° (по свойству параллельных прямых).
Диагонали параллелограмма пересекаются, и точка пересечения делит их пополам. Точка пересечения диагоналей является центром симметрии параллелограмма. Параллелограмм диагональю делится на два равных треугольника. Средние линии параллелограмма пересекаются в точке пересечения его диагоналей. В этой точке две его диагонали и две его средние линии делятся пополам.
Тождество параллелограмма: сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон:
- ,
где и — длины смежных сторон, а и — длины диагоналей. Тождество параллелограмма есть простое следствие формулы Эйлера для произвольного четырехугольника: учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумма квадратов его диагоналей. У параллелограмма противоположные стороны равны, а расстояние между серединами диагоналей равно нулю.
Аффинное преобразование всегда переводит параллелограмм в параллелограмм. Для любого параллелограмма существует аффинное преобразование, которое отображает его в квадрат.
Четырёхугольник, вершины которого совпадают с серединами сторон произвольного четырёхугольника, является параллелограммом, стороны которого параллельны диагоналям исходного четырёхугольника (вариньонов параллелограмм).
Признаки параллелограмма
Четырёхугольник является параллелограммом, если выполняется одно из следующих условий (в этом случае выполняются и все остальные):
- у четырёхугольника без самопересечений две противоположные стороны одновременно равны и параллельны: и ;
- все противоположные углы попарно равны: и ;
- у четырёхугольника без самопересечений все противоположные стороны попарно равны: и ;
- все противоположные стороны попарно параллельны: и ;
- диагонали делятся в точке их пересечения пополам: и , где — точка пересечения диагоналей;
- сумма расстояний между серединами противоположных сторон выпуклого четырёхугольника равна его полупериметру;
- сумма квадратов диагоналей равна сумме квадратов сторон выпуклого четырёхугольника: .
Площадь параллелограмма
Площадь параллелограмма равна произведению его основания на высоту: , где — сторона, — высота, проведённая к этой стороне. Также площадь параллелограмма может быть вычислена как произведение длин его смежных сторон и и синуса угла между ними: .
Ещё один способ определения площади параллелограмма — через длины смежных сторон и и длину любой из диагоналей по формуле Герона как сумма площадей двух равных примыкающих треугольников[2]:
- ,
где .
Примечания
- ↑ 1 2 Справочник по элементарной математике, 2006, с. 332—333.
- ↑ Геометрия, 8 класс. Урок 14. Формула Герона . Дата обращения: 26 октября 2023. Архивировано 3 апреля 2022 года.
Литература
- Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6.
Ссылки
- Weisstein, Eric W. Parallelogram (англ.) на сайте Wolfram MathWorld.