Хиральность (математика): различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Строка 55: Строка 55:


== Источники ==
== Источники ==
* {{h|''Petitjean М.'' Хиральность, 1978|3=
''Соколов В И.'' Хиральность // ''[[Большая советская энциклопедия]].'' (В 30 томах) Гл. ред. [[Прохоров, Александр Михайлович|А. М. Прохоров]]. Изд. 3-е. М.: «[[Большая российская энциклопедия (издательство)|Советская энциклопедия]]», 1978. Т. 28. Франкфурт — Чага. 1978. 616 с. с илл., 28 л. илл., 4 л. карт, 1 карта — вкладка. С. 291. [http://bse.uaio.ru/BSE/2802.htm Хиральность] // [http://bse.uaio.ru/BSE/bse30.htm#x000 БСЭ 3-е издание. Основной вариант] {{Wayback|http://bse.uaio.ru/BSE/2802.htm |date=20240425}}
* {{h|''Соколов В. И.'' Хиральность, 1978|3=
* {{h|''Соколов В. И.'' Хиральность, 1978|3=
''Соколов В И.'' Хиральность // ''[[Большая советская энциклопедия]].'' (В 30 томах) Гл. ред. [[Прохоров, Александр Михайлович|А. М. Прохоров]]. Изд. 3-е. М.: «[[Большая российская энциклопедия (издательство)|Советская энциклопедия]]», 1978. Т. 28. Франкфурт — Чага. 1978. 616 с. с илл., 28 л. илл., 4 л. карт, 1 карта — вкладка. С. 291. [http://bse.uaio.ru/BSE/2802.htm Хиральность] // [http://bse.uaio.ru/BSE/bse30.htm#x000 БСЭ 3-е издание. Основной вариант] {{Wayback|http://bse.uaio.ru/BSE/2802.htm |date=20240425}}
''Соколов В И.'' Хиральность // ''[[Большая советская энциклопедия]].'' (В 30 томах) Гл. ред. [[Прохоров, Александр Михайлович|А. М. Прохоров]]. Изд. 3-е. М.: «[[Большая российская энциклопедия (издательство)|Советская энциклопедия]]», 1978. Т. 28. Франкфурт — Чага. 1978. 616 с. с илл., 28 л. илл., 4 л. карт, 1 карта — вкладка. С. 291. [http://bse.uaio.ru/BSE/2802.htm Хиральность] // [http://bse.uaio.ru/BSE/bse30.htm#x000 БСЭ 3-е издание. Основной вариант] {{Wayback|http://bse.uaio.ru/BSE/2802.htm |date=20240425}}
}}
* {{h|''Petitjean М.'' Chirality in metric spaces, 2010|3=
''Petitjean М.'' Chirality in metric spaces // Symmetry: Culture and Science. 2010. Vol. 21. Nos. 1–3. P. 27–36. [http://bse.uaio.ru/BSE/2802.htm Хиральность] // [https://studyres.com/doc/16347814/chirality-in-metric-spaces]
}}
}}



Версия от 03:07, 26 октября 2024

Правило левой руки и правило правой руки

Хира́льность (англ. chirality, от др.-греч. χείρ — рука) — свойство геометрической фигуры, состоящее в отсутствии её совместимости со своей идеальной зеркальной копией[1].

Рука — самый известный хиральный объект. Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово «энантиоморф» происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный объект называется ахиральным, или амфихиральным.

Винтовая линия (а также витая пряжа, штопор, пропеллер и т. п.) и лента Мёбиуса — это трёхмерные хиральные объекты. Фигурки тетрамино в форме букв J, L, S и Z из популярной игры «Тетрис» также обладают хиральностью, но только в двумерном пространстве.

Некоторым хиральным объектам, таким как винт, можно приписать правую (левую) ориентацию, в соответствии с правилом правой руки (правилом левой руки).

Хиральность и группы симметрии

Фигура ахиральна тогда и только тогда, когда её группа симметрий содержит хотя бы одну изометрию, меняющую ориентацию. В евклидовой геометрии любая изометрия имеет вид , где  — ортогональная матрица, а  — вектор. Определитель матрицы равен 1 или −1. Если он равен −1, то изометрия меняет ориентацию, в противном случае она сохраняет ориентацию.

Хиральность в трёхмерном пространстве

В трёхмерном пространстве любая фигура, обладающая плоскостью симметрии или центром симметрии ахиральна. Однако, существуют ахиральные фигуры, не обладающие ни центром, ни плоскостью симметрии, например:

Эта фигура инвариантна относительно меняющего ориентацию преобразования и поэтому ахиральна, но не обладает ни плоскостью, ни центром симметрии. Фигура

также ахиральна, так как начало координат является для неё центром симметрии, но у неё нет плоскости симметрии.

Хиральность в двух измерениях

В двумерном пространстве любая фигура, обладающая осью симметрии, является ахиральной. Можно показать, что любая ограниченная ахиральная фигура обладает осью симметрии. Для бесконечных фигур это не обязательно выполняется. Рассмотрим следующий (конечный) рисунок:

> > > > > > > > > >
 > > > > > > > > > >

Это хиральная фигура, так как она не совпадает со своим зеркальным изображением:

 > > > > > > > > > > 
> > > > > > > > > >

Но если продолжить его вправо и влево до бесконечности, то получится неограниченная ахиральная фигура, не обладающая осью симметрии. Её группа симметрий — это группа бордюра, порождённая единственным скользящим отражением.

Теория узлов

Узел называется ахиральным, если его можно непрерывно деформировать в его зеркальный образ, в противном случае его называют хиральным. Например, незаузлённый узел и «восьмёрка» ахиральны, в то время как трилистный узел хирален.

См. также

Примечания


Источники

Ссылки