Хиральность (математика): различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
м Добавлена Категория:Топология с помощью HotCat |
|||
Строка 69: | Строка 69: | ||
[[Категория:Симметрия (математика)]] |
[[Категория:Симметрия (математика)]] |
||
[[Категория:Теория узлов]] |
[[Категория:Теория узлов]] |
||
[[Категория:Топология]] |
Версия от 03:22, 26 октября 2024
Страницу в данный момент активно редактирует участник [[user:Matsievsky|Matsievsky]] ([[user talk:Matsievsky|обс.]] · [[special:Contributions/Matsievsky|вклад]]). |
Хира́льность (англ. chirality, от др.-греч. χείρ — рука) — свойство геометрической фигуры, состоящее в отсутствии её совместимости со своей идеальной зеркальной копией[1][2]. Другими словами, хиральность — отсутствие зеркальной симметрии у геометрической фигуры[2].
Ахиральность — наличие зеркальной симметрии у геометрической фигуры[2].
Рука — самый известный хиральный объект. Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово «энантиоморф» происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный объект также называется амфихиральным.
Винтовая линия (а также витая пряжа, штопор, пропеллер и т. п.) и лента Мёбиуса — это трёхмерные хиральные объекты. Фигурки тетрамино в форме букв J, L, S и Z из популярной игры «Тетрис» также обладают хиральностью, но только в двумерном пространстве.
Некоторым хиральным объектам, таким как винт, можно приписать правую (левую) ориентацию, в соответствии с правилом правой руки (правилом левой руки).
Хиральность и группы симметрии
Фигура ахиральна тогда и только тогда, когда её группа симметрий содержит хотя бы одну изометрию, меняющую ориентацию. В евклидовой геометрии любая изометрия имеет вид , где — ортогональная матрица, а — вектор. Определитель матрицы равен 1 или −1. Если он равен −1, то изометрия меняет ориентацию, в противном случае она сохраняет ориентацию.
Хиральность в трёхмерном пространстве
В трёхмерном пространстве любая фигура, обладающая плоскостью симметрии или центром симметрии ахиральна. Однако, существуют ахиральные фигуры, не обладающие ни центром, ни плоскостью симметрии, например:
Эта фигура инвариантна относительно меняющего ориентацию преобразования и поэтому ахиральна, но не обладает ни плоскостью, ни центром симметрии. Фигура
также ахиральна, так как начало координат является для неё центром симметрии, но у неё нет плоскости симметрии.
Хиральность в двух измерениях
В двумерном пространстве любая фигура, обладающая осью симметрии, является ахиральной. Можно показать, что любая ограниченная ахиральная фигура обладает осью симметрии. Для бесконечных фигур это не обязательно выполняется. Рассмотрим следующий (конечный) рисунок:
> > > > > > > > > > > > > > > > > > > >
Это хиральная фигура, так как она не совпадает со своим зеркальным изображением:
> > > > > > > > > > > > > > > > > > > >
Но если продолжить его вправо и влево до бесконечности, то получится неограниченная ахиральная фигура, не обладающая осью симметрии. Её группа симметрий — это группа бордюра, порождённая единственным скользящим отражением.
Теория узлов
Узел называется ахиральным, если его можно непрерывно деформировать в его зеркальный образ, в противном случае его называют хиральным. Например, незаузлённый узел и «восьмёрка» ахиральны, в то время как трилистный узел хирален.
См. также
Примечания
Источники
- Соколов В И. Хиральность // Большая советская энциклопедия. (В 30 томах) Гл. ред. А. М. Прохоров. Изд. 3-е. М.: «Советская энциклопедия», 1978. Т. 28. Франкфурт — Чага. 1978. 616 с. с илл., 28 л. илл., 4 л. карт, 1 карта — вкладка. С. 291. Хиральность // БСЭ 3-е издание. Основной вариант Архивная копия от 25 апреля 2024 на Wayback Machine
- Petitjean М. Chirality in metric spaces // Symmetry: Culture and Science. 2010. Vol. 21. Nos. 1–3. P. 27–36. Хиральность // [1]
Ссылки
- Математическая теория хиральности (Michel Petitjean) (англ.)