Циркуляция векторного поля: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 40: Строка 40:
* В произвольном ''n''-мерном случае (где векторное произведение не определено) формулу Стокса можно записать как
* В произвольном ''n''-мерном случае (где векторное произведение не определено) формулу Стокса можно записать как
:<math>\oint\limits_{\Gamma} \mathbf{F}d\mathbf{l} = \int\limits_{S} \bigg(\partial_i F_j - \partial_j F_i\bigg) dS^{ij},</math>
:<math>\oint\limits_{\Gamma} \mathbf{F}d\mathbf{l} = \int\limits_{S} \bigg(\partial_i F_j - \partial_j F_i\bigg) dS^{ij},</math>
:где используется тензорное определение ротора, элемент двумерной площади в виде тензора второго ранга (формула записана здесь, подразумевая [[правило Эйнштейна|правило суммирования Эйнштейна]]; <math>\partial_i</math> - означает дифференцирование по ''i''-той координате).
:где используется тензорное определение ротора и элемент двумерной площади в виде тензора второго ранга (формула записана здесь, подразумевая [[правило Эйнштейна|правило суммирования Эйнштейна]]; <math>\partial_i</math> - означает дифференцирование по ''i''-той координате).


== Физическая интерпретация ==
== Физическая интерпретация ==

Версия от 12:52, 18 марта 2009

Циркуля́цией ве́кторного по́ля называется криволинейный интеграл второго рода, взятый по произвольному замкнутому контуру Γ. По определению

где — векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур Γ, — бесконечно малое приращение радиус-вектора вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру.

  • Определение приведено для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на произвульную размерность пространства.

Свойства циркуляции

Свойство аддитивности циркуляции: циркуляция по контуру есть сумма циркуляций по контурам и , то есть

Аддитивность

Циркуляция по контуру, ограничивающему несколько смежных поверхностей, равна сумме циркуляций по контурам, ограничивающим каждую поверхность в отдельности, то есть


Формула Стокса

Циркуляция вектора F по произвольному контуру Г равна потоку вектора через произвольную поверхность S, ограниченную данным контуром.

где

Ротор (вихрь) вектора F.

В случае, если контур плоский, например лежит в плоскости OXY, справедлива формула Грина

где — плоскость, ограничиваемая контуром (внутренность контура).

  • В произвольном n-мерном случае (где векторное произведение не определено) формулу Стокса можно записать как
где используется тензорное определение ротора и элемент двумерной площади в виде тензора второго ранга (формула записана здесь, подразумевая правило суммирования Эйнштейна; - означает дифференцирование по i-той координате).

Физическая интерпретация

Физическая интерпретация циркуляции: Работа поля по замкнутому контуру

Если F — некоторое силовое поле, тогда циркуляция этого поля по некоторому произвольному контуру Γ есть работа этого поля при перемещении точки вдоль контура Г. Отсюда непосредственно следует критерий потенциальности поля: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль.

Историческая справка

Термин «циркуляция» был первоначально введен в гидродинамике для расчета циркуляции жидкости по замкнутому каналу. Рассмотрим течение идеальной несжимаемой жидкости. Выберем произвольный контур Γ. Мысленно представим, что мы заморозили всю жидкость в объеме, за исключением тонкого канала, включающего в себя контур Γ. Тогда, в зависимости от первоначального характера течения жидкости, она будет либо неподвижной в канале, либо двигаться вдоль контура (циркулировать). В качестве характеристики такого движения берут величину равную произведению скорости движения жидкости по каналу на длину контура l.

Так как при затвердевании стенок канала нормальная к контуру компонента скорости будет погашена, жидкость по каналу будет двигаться с тангенциальной составляющей исходной скорости . Тогда циркуляцию можно представить в виде

где dl — элемент длины контура.

Позже понятие «циркуляция» было распространено на любые поля, даже такие, в которых «циркулировать» нечему.

Литература

  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т.3. М.: «Наука», 1960.
  • Савельев И. В. Курс общей физики. Т2. М.: Астрель • АСТ, 2004.