Ротор (дифференциальный оператор): различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Поясняющие примеры: это как же должно вращаться, чтобы обнулилось?
Строка 35: Строка 35:
Применяя к формуле Коши—Гельмгольца операцию ротора, получим, что в точке О справедливо равенство <math>\operatorname{rot} ~\mathbf{v} = 2\mathbf{\omega},</math> и, следовательно, можно заключить, что когда речь идет о векторном поле, являющемся полем скоростей некоторой среды, ротор этого векторного поля в заданной точке равен удвоенному вектору углового вращения элемента среды с центром в этой точке.
Применяя к формуле Коши—Гельмгольца операцию ротора, получим, что в точке О справедливо равенство <math>\operatorname{rot} ~\mathbf{v} = 2\mathbf{\omega},</math> и, следовательно, можно заключить, что когда речь идет о векторном поле, являющемся полем скоростей некоторой среды, ротор этого векторного поля в заданной точке равен удвоенному вектору углового вращения элемента среды с центром в этой точке.


Например, если в качестве векторного поля взять поле скоростей ветра на Земле, то для [[циклон]]а, вращающегося [[по часовой стрелке]], ротор будет направлен вниз, а для циклона, вращающегося [[против часовой стрелки]] — вверх. В тех местах, где ветры дуют прямолинейно и с одинаковой скоростью, ротор будет равен нулю (у неоднородного прямолинейного течения ротор ненулевой).
Например, если в качестве векторного поля взять поле скоростей ветра на Земле, то в северном полушарии для[[антициклона]]а, вращающегося [[по часовой стрелке]], ротор будет направлен вниз, а для циклона, вращающегося [[против часовой стрелки]] — вверх. В тех местах, где ветры дуют прямолинейно и с одинаковой скоростью, ротор будет равен нулю (у неоднородного прямолинейного течения ротор ненулевой).


== Основные свойства ==
== Основные свойства ==

Версия от 10:37, 14 мая 2009

Ро́тор, или вихрьвекторный дифференциальный оператор над векторным полем. Показывает, насколько и в каком направлении закручено поле в каждой точке. Ротор поля F обозначается символом rot F (в русскоязычной литературе) или curl F (в англоязычной литературе), а также где — векторный дифференциальный оператор набла.

Математическое определение

Ротор векторного поля — вектор, проекция которого на каждое направление равна пределу отношения циркуляции векторного поля по контуру L плоской площадки ΔS, перпендикулярной к этому направлению, к величине этой площадки, когда размеры площадки стремятся к нулю, а сама площадка стягивается в точку:

.

Нормаль к площадке направлена так, чтобы при вычислении циркуляции обход по контуру L совершался против часовой стрелки.

В трёхмерной декартовой системе координат вычисляется следующим образом:

Для удобства запоминания можно условно представлять ротор как векторное произведение:

где i, j и k — единичные орты для осей x, y и z соответственно.

Векторное поле, ротор которого равен нулю в любой точке, называется потенциальным (безвихревым).

Физическая интерпретация

По теореме Коши-Гельмгольца распределение скоростей сплошной среды вблизи точки О задаётся уравнением

где — вектор углового вращения элемента среды в точке О, а квадратичная форма от координат — потенциал деформации элемента среды.

Таким образом, движение сплошной среды вблизи точки О складывается из поступательного движения (вектор ), вращательного движения (вектор ) и потенциального движения — деформации (вектор ). Применяя к формуле Коши—Гельмгольца операцию ротора, получим, что в точке О справедливо равенство и, следовательно, можно заключить, что когда речь идет о векторном поле, являющемся полем скоростей некоторой среды, ротор этого векторного поля в заданной точке равен удвоенному вектору углового вращения элемента среды с центром в этой точке.

Например, если в качестве векторного поля взять поле скоростей ветра на Земле, то в северном полушарии дляантициклонаа, вращающегося по часовой стрелке, ротор будет направлен вниз, а для циклона, вращающегося против часовой стрелки — вверх. В тех местах, где ветры дуют прямолинейно и с одинаковой скоростью, ротор будет равен нулю (у неоднородного прямолинейного течения ротор ненулевой).

Основные свойства

Следующие свойства могут быть получены из обычных правил дифференцирования.

  • Линейность:

для любых векторных полей F и G и для всех вещественных чисел a и b.

  • Если — скалярное поле, а F — векторное, тогда:

или

или

При этом верно и обратное: если поле F бездивергентно, оно есть поле вихря некоторого поля G:

  • Если поле F потенциально, его ротор равен нулю (поле F — безвихревое):

Верно и обратное: если поле безвихревое, то оно потенциально:

для некоторого скалярного поля

Ротор в ортогональных криволинейных координатах

где Hiкоэффициенты Ламе.

Примеры

Простое векторное поле

Рассмотрим векторное поле, линейно зависящее от координат x и y:

.

Очевидно, что поле закручено. Если мы поместим колесо с лопастями в любой области поля, мы увидим, что оно начнет вращаться по направлению часовой стрелки. Используя правило правой руки, можно ожидать ввинчивание поля в страницу. Для правой системы координат направление в страницу будет означать отрицательное направление по оси z.

Вычислим ротор:

Как и предположили, направление совпало с отрицательным направлением оси z. В данном случае ротор является константой, так как он независим от координаты. Количество вращения в приведенном выше векторном поле одно и то же в любой точке (x,y). График ротора F не слишком интересен:

Более сложный пример

Теперь рассмотрим несколько более сложное векторное поле:

.

Его график:

Мы можем не увидеть никакого вращения, но, посмотрев повнимательнее направо, мы видим большее поле в, например, точке x=4, чем в точке x=3. Если бы мы установили маленькое колесо с лопастями там, больший поток на правой стороне заставил бы колесо вращаться по часовой стрелке, что соответствует ввинчиванию в направлении -z. Если бы мы расположили колесо в левой части поля, больший поток на его левой стороне заставил бы колесо вращаться против часовой стрелке, что соответствует ввинчиванию в направлении +z. Проверим нашу догадку с помощью вычисления:

Действительно, ввинчивание происходит в направлении +z для отрицательных x и -z для положительных x, как и ожидалось. Так как этот ротор не одинаков в каждой точке, его график выглядит немного интереснее:

Ротор F с плоскостью x=0, выделенной темно-синим цветом

Можно заметить, что график этого ротора не зависит от y или z (как и должно быть) и направлен по -z для положительных x и в направлении +z для отрицательных x.

Три общих примера

Рассмотрим пример × [ v × F ]. Используя прямоугольную систему координат, можно показать, что

Если v и поменять местами:

что является фейнмановской записью с нижним индексом F, что значит, что градиент с индексом F относится только к F.

Другой пример × [ × F ]. Используя прямоугольную систему координат, можно показать, что:

что можно считать частным случаем первого примера с подстановкой v.

Поясняющие примеры

  • В смерче ветры вращаются вокруг центра, и векторное поле скоростей ветра имеет ненулевой ротор везде. (см. Вихревое движение).
  • В векторном поле, описывающем линейные скорости движения каждой точки вращающегося диска ротор был бы постоянным во всех частях диска.
  • Если бы скорости автомобилей на трассе описывались векторным полем, и разные полосы имели разные ограничения по скорости движения, ротор на границе между полосами был бы ненулевым.
  • Закон электромагнитной индукции Фарадея, одно из уравнений Максвелла, может быть выражен очень просто через понятие ротора. Он говорит, что ротор электрического поля равен скорости изменения магнитного поля, взятой с обратным знаком, а ротор напряжённости магнитного поля равен сумме плотностей тока обычного и тока смещения.

[1]

Примечания

  1. Математический словарь высшей школы. В. Т. Воднев, А. Ф. Наумович, Н. Ф. Наумович

См. также