Парадокс субмарины: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Нет описания правки |
Melirius (обсуждение | вклад) дополнение |
||
Строка 1: | Строка 1: | ||
''' |
'''Парадо́кс субмари́ны''' (иногда называемый '''парадо́ксом Архиме́да''' или '''парадо́ксом Са́ппли''') — мысленный эксперимент в рамках теории относительности Эйнштейна, приводящий к трудноразрешимому парадоксу. |
||
Согласно [[специальная теория относительности|Специальной теории относительности]] [[Эйнштейн]]а |
Согласно [[специальная теория относительности|Специальной теории относительности]] [[Эйнштейн]]а с точки зрения неподвижного наблюдателя размеры объекта, движущегося со скоростью, близкой к [[скорость света|скорости света]], уменьшаются в направлении движения. Однако с точки зрения объекта, именно неподвижные наблюдатели кажутся короче. |
||
Если предположить, что некая [[субмарина]] движется под водой с околосветовой скоростью, неподвижным наблюдателям она покажется сжавшейся. Плотность её, соответственно, должна увеличиться, что непременно потянет её на дно. Но со стороны объекта — находящегося на борту субмарины |
Если предположить, что некая [[субмарина]] движется под водой с околосветовой скоростью, неподвижным наблюдателям она покажется сжавшейся. Плотность её, соответственно, должна увеличиться, что непременно потянет её на дно. Но со стороны объекта — находящегося на борту субмарины экипажа — всё воспринималось бы с точностью до наоборот: «бегущая» вода вокруг них сжимается, а значит становится более плотной и выталкивает лодку на поверхность. |
||
Теория относительности говорит, что |
Теория относительности говорит, что верно первое предположение — подводная лодка затонет. Учёные объясняют парадокс по-разному. На слои и на лодку действует масса факторов, требующих обязательного учёта для успешного решения этого парадокса. Здесь и увеличение воздействия [[гравитация|гравитации]] на лодку, которая потянет её вниз, и искажение формы слоёв воды вверх (они «задираются» с точки зрения субмарины из-за нарушения одновременности начала ускорения). |
||
В [[1989 год]]у Джеймс Саппли |
В [[1989 год]]у Джеймс Саппли разрешил парадокс с использованием специальной теории относительности. В честь него эту задачу называют также «Парадокс Саппли». |
||
В [[2003 год]]у бразилец Джордж Матсас из Сан-Паулу |
В [[2003 год]]у бразилец Джордж Матсас из Сан-Паулу рассмотрел этот парадокс, используя общую теорию относительности. У обоих учёных вывод был одинаков: '''субмарина будет погружаться'''. |
||
== Суть решения == |
== Суть решения == |
||
Строка 23: | Строка 23: | ||
<math>a=\frac{1}{\gamma m}\frac{dp}{dt}=\frac{1}{\gamma^2 m}\frac{dp_0}{dt}=\frac{a_0}{\gamma^2},</math> |
<math>a=\frac{1}{\gamma m}\frac{dp}{dt}=\frac{1}{\gamma^2 m}\frac{dp_0}{dt}=\frac{a_0}{\gamma^2},</math> |
||
где учтено, что подводная лодка ускоряется перпендикулярно направлению своего движения. Как видно, ускорение «движущейся» субмарины |
где учтено, что подводная лодка ускоряется перпендикулярно направлению своего движения. Как видно, ускорение «движущейся» субмарины меньше, чем покоящейся — она затонет. |
||
меньше, чем покоящейся — она затонет. |
|||
Теперь рассмотрим ситуацию в системе отсчёта, где подлодка «неподвижна», но двигается жидкость. Плотность жидкости из-за её релятивистского сокращения возрастёт, что увеличит [[Сила Архимеда|силу Архимеда]] в <math>\gamma</math> раз, то есть передача импульса станет равна <math>\frac{dp'}{dt'}=\gamma\frac{dp_0}{dt}</math>, что вызовет ускорение субмарины |
Теперь рассмотрим ситуацию в системе отсчёта, где подлодка «неподвижна», но двигается жидкость. Плотность жидкости из-за её релятивистского сокращения возрастёт, что увеличит [[Сила Архимеда|силу Архимеда]] в <math>\gamma</math> раз, то есть передача импульса станет равна <math>\frac{dp'}{dt'}=\gamma\frac{dp_0}{dt}</math>, что вызовет ускорение субмарины |
Версия от 19:41, 12 октября 2009
Парадо́кс субмари́ны (иногда называемый парадо́ксом Архиме́да или парадо́ксом Са́ппли) — мысленный эксперимент в рамках теории относительности Эйнштейна, приводящий к трудноразрешимому парадоксу.
Согласно Специальной теории относительности Эйнштейна с точки зрения неподвижного наблюдателя размеры объекта, движущегося со скоростью, близкой к скорости света, уменьшаются в направлении движения. Однако с точки зрения объекта, именно неподвижные наблюдатели кажутся короче.
Если предположить, что некая субмарина движется под водой с околосветовой скоростью, неподвижным наблюдателям она покажется сжавшейся. Плотность её, соответственно, должна увеличиться, что непременно потянет её на дно. Но со стороны объекта — находящегося на борту субмарины экипажа — всё воспринималось бы с точностью до наоборот: «бегущая» вода вокруг них сжимается, а значит становится более плотной и выталкивает лодку на поверхность.
Теория относительности говорит, что верно первое предположение — подводная лодка затонет. Учёные объясняют парадокс по-разному. На слои и на лодку действует масса факторов, требующих обязательного учёта для успешного решения этого парадокса. Здесь и увеличение воздействия гравитации на лодку, которая потянет её вниз, и искажение формы слоёв воды вверх (они «задираются» с точки зрения субмарины из-за нарушения одновременности начала ускорения).
В 1989 году Джеймс Саппли разрешил парадокс с использованием специальной теории относительности. В честь него эту задачу называют также «Парадокс Саппли».
В 2003 году бразилец Джордж Матсас из Сан-Паулу рассмотрел этот парадокс, используя общую теорию относительности. У обоих учёных вывод был одинаков: субмарина будет погружаться.
Суть решения
Всё рассмотрение можно вести в рамках специальной теории относительности, переходя в движущуюся с ускорением систему отсчёта (в которой удобно ввести координаты Риндлера). Проще, однако, рассмотреть всё из инерциальной системы отсчёта, где ускорение жидкости вызывается какой-либо причиной, например, жидкость электрически заряжена и находится в электрическом поле, либо её подпирает ускоренно движущаяся стенка. Важно, что эта причина не ускоряет субмарину — например, подводная лодка нейтральна, либо не контактирует со стенкой. Ограничимся начальным моментом времени, когда жидкость покоится, а скорость субмарины равна 0 для «неподвижного» случая, и (с соответствующим ) для «движущегося».
С точки зрения инерциальных наблюдателей ускорение подводной лодки (не важно, в покое или в движении) вызывается передачей импульса от молекул жидкости к молекулам подводной лодки — это микроскопическое определение давления. Эта передача пропорциональна площади поверхности жидкости, контактирующей с субмариной, и соответственно уменьшается в раз при сокращении подводной лодки из-за её движения. Поэтому передача импульса равна для «неподвижной» субмарины, и для «движущейся». Теперь несложно вычислить ускорения, получаемые субмаринами в начальный момент: для «неподвижной» подлодки это будет величина, по условию совпадающая с ускорением жидкости
где — масса субмарины, а для «движущейся»
где учтено, что подводная лодка ускоряется перпендикулярно направлению своего движения. Как видно, ускорение «движущейся» субмарины меньше, чем покоящейся — она затонет.
Теперь рассмотрим ситуацию в системе отсчёта, где подлодка «неподвижна», но двигается жидкость. Плотность жидкости из-за её релятивистского сокращения возрастёт, что увеличит силу Архимеда в раз, то есть передача импульса станет равна , что вызовет ускорение субмарины
Однако при переходе в эту инерциальную систему отсчёта ускорение жидкости также изменится. Выделив в жидкости некоторый уровень, имеем в исходной системе его уравнение движения , а в новой, согласно преобразованиям Лоренца для месторасположения подводной лодки , получаем то есть ускорение уровня жидкости, измеряемое с субмарины, равно . Оно больше ускорения подлодки — она затонет.
Точно такой же результат получается, если взять правильное уравнение гиперболического движения вместо приближённого, верного лишь вблизи . Есть ещё некоторый эффект, связанный с нарушением одновременности ускорения различных частей жидкости относительно системы отсчёта субмарины, но он может быть сведён к пренебрежимо малой величине выбором малого ускорения и/или размера субмарины в направлении движения (см. работу Матсаса для подробного разбора).
Ссылки
- George E. A. Matsas. Relativistic Arquimedes law for fast moving bodies and the general-relativistic resolution of the «submarine paradox». Phys. Rev. D68 (2003) 027701
- Теория относительности топит субмарины
Это заготовка статьи по физике. Помогите Википедии, дополнив её. |