Асимптотическая кривая: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 13: Строка 13:
* [[Соприкасающаяся плоскость]] асимптотической кривой <math>\gamma</math> (там, где она существует) совпадает с [[касательная плоскость|касательной плоскостью]] к F в той же точке.
* [[Соприкасающаяся плоскость]] асимптотической кривой <math>\gamma</math> (там, где она существует) совпадает с [[касательная плоскость|касательной плоскостью]] к F в той же точке.
* Квадрат [[Кручение кривой|кручения]] асимптотической кривой (там, где оно определено) равен модулю [[гауссова кривизна|гауссовой кривизны]] поверхности <math>F</math> ('''теорема Бельтрами — Эннепера''').
* Квадрат [[Кручение кривой|кручения]] асимптотической кривой (там, где оно определено) равен модулю [[гауссова кривизна|гауссовой кривизны]] поверхности <math>F</math> ('''теорема Бельтрами — Эннепера''').
* Прямолинейный отрезок на <math>F</math> всегда является асимптотической кривой.
* Прямолинейный отрезок на поверхности <math>F</math> всегда является асимптотической кривой. В частности, асимптотическими кривыми являются прямолинейные образующие поверхности.
* [[Параболическая кривая]] всегда является асимптотической кривой. Например,
* [[Параболическая кривая]] всегда является асимптотической кривой. Например,
** параллель [[тор]]а, разделяющая области с гауссовой кривизной разных знаков
** параллель [[тор]]а, разделяющая области с гауссовой кривизной разных знаков

Версия от 18:52, 20 февраля 2010

Асимптотическая кривая — кривая на регулярной поверхности в евклидовом пространстве, в каждой точке касающаяся асимптотического направления поверхности , т.е. такого направления, в котором нормальное сечение поверхности имеет нулевую кривизну. Так как нормальные сечения с нулевой кривизной существуют не во всех точках поверхности, то и асимптотические линии, вообще говоря, заполняют не всю поверхность.

Асимптотическая кривая определяется дифференциальным уравнением

где вторая фундаментальная форма поверхности .

Три типа точек поверхности

Точки, в которых гауссова кривизна , называются гиперболическими (примером поверхности, целиком состоящей из гиперболических точек, служит однополостный гиперболоид или гиперболический параболоид); точки, в которых гауссова кривизна , называются эллиптическими (примером поверхности, целиком состоящей из эллиптических точек, служит эллипсоид или двуполостный гиперболоид); точки, в которых , но средняя кривизна , называются параболическими (примером поверхности, целиком состоящей из параболических точек, служит конус или цилиндр). Параболические точки, как правило, образуют кривую, разделяющую поверхность на эллиптическую и гиперболическую области.

В области эллиптических точек асимптотических линий нет. В области гиперболических точек имеется ровно два семейства асимптотических линий, составляющие так называемую асимптотическую сеть: через каждую гиперболическую точку проходит по одной линии каждого семейства, они пересекаются под ненулевым углом. В параболических точках асимптотические линии имеют, как правило, особенность типа точки возврата (касп) и представляют собой полукубические параболы, лежащие (за исключением самой точки возврата) в гиперболической области, примыкающей к параболической линии.

Свойства

  • Соприкасающаяся плоскость асимптотической кривой (там, где она существует) совпадает с касательной плоскостью к F в той же точке.
  • Квадрат кручения асимптотической кривой (там, где оно определено) равен модулю гауссовой кривизны поверхности (теорема Бельтрами — Эннепера).
  • Прямолинейный отрезок на поверхности всегда является асимптотической кривой. В частности, асимптотическими кривыми являются прямолинейные образующие поверхности.
  • Параболическая кривая всегда является асимптотической кривой. Например,
    • параллель тора, разделяющая области с гауссовой кривизной разных знаков
    • ребро возврата на псевдосфере.
    • На поверхностях постоянной отрицательной кривизны асимптотическая сеть является чебышёвской сетью, причем площадь четырехугольника, образованного асимптотическими кривыми, пропорциональна избытку суммы его внутренних углов над (формула Хаццидакиса).
    • На минимальной поверхности асимптотическая сеть является ортогональной сетью.
  • При проективном преобразовании пространства асимптотические кривые поверхности переходят в асимптотические кривые преобразованной поверхности .

Уравнение для графика функции

Пусть в евклидовом пространстве с координатами и метрикой поверхность задана в виде графика функции . Тогда в координатах асимптотические линии поверхности задаются дифференциальным уравнением Введя обозначение , его можно переписать в виде Дискриминант стоящего в левой части квадратного трёхчлена (относительно переменной ) совпадает с гессианом функции , взятым с обратным знаком, и уравнение задает на плоскости кривую, состоящую из параболических точек поверхности (при условии, что один из коэффициентов или отличен от нуля), которая также является дискриминантной кривой данного дифференциального уравнения, не разрешённого относительно производной. В типичном случае почти во всех параболических точках это уравнение имеет нормальную форму Чибрарио, исключение составляют лишь точки, лежащие на дискриминантной кривой дискретно, в них нормальная форма уравнения более сложна. Еще более сложную нормальную форму уравнение асимптотических линий имеет в точках, где все три коэффициента , , обращаются в нуль одновременно, — это так называемые плоские омбилики (точки, в которых т.е. все нормальные сечения поверхности имеют нулевую кривизну).

Примеры

1. Все точки однополостного гиперболоида относятся к гиперболическому типу. Уравнение асимптотических линий в данном случае принимает вид , где . Как легко проверить, общее решение этого уравнения задается формулой , где параметры и подчинены соотношению . Там самым мы получаем два семейства (соответствующих разным знакам в формуле ) асимптотических линий однополостного гиперболоида, совпадающих с семействами его прямолинейных образующих.

2. Асимтотические линии конуса также совпадают с его прямолинейными образующими. Так как все точки конуса параболические, то мы имеем ровно одно семейство асимптотических линий.

3. В случае поверхности, заданной уравнением , имеем . Линия параболических точек () делит поверхность на эллиптическую () и гиперболическую () области. В последней расположены два семейства асимптотических линий. Во всех параболических точках, за исключением начала координат (), уравнение асимптотических линий имеет нормальную форму Чибрарио, следовательно, асимптотические линии в окрестности этих точек имеют вид полукубических парабол. В начале координат сеть асимптотических линий имеет более сложную особенность, характер которой зависит от параметра , см. статью.

Литература

  • Рашевский П. К. Курс дифференциальной геометрии, — Любое издание.
  • Фиников С. П. Курс дифференциальной геометрии, — Любое издание.
  • Фиников С. П. Теория поверхностей, — Любое издание.
  • Мищенко А. С., Фоменко А. Т. Курс дифференциальной геометрии и топологии, — Любое издание.